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Abstract—A technique introduced by Indyk and Woodruff entropy estimation [5], cascaded norms [18], [23], Earth-
(STQC 2005) has inspired several recent advances in da@ st mover Distance [2]¢1 sampling algorithm [29], distance to
algorithms. We show that a number of these results follow easindependence of two random variables [7], and even, more

ily from the application of a single probabilistic methodlled - . . " .
Precision SamplingUsing this method, we obtain simple data- generically, a characterization of “sketchable” functasf

stream algorithms that maintain a randomized sketch of patin frequencies [9]. While clearly very powerful, the Indyk-
vector z = (w1,2,...,T,), Which is useful for the following Woodruff technique is somewhat technically involved, and

applications: hence tends to be cumbersome to work with.
« Estimating theF;,-moment ofz, for k > 2. In this paper, we show an alternative design for the Indyk-
« Estimating the/,,-norm of z, for p € [1, 2], with small update Woodruff techni ting i imolified alaorithm f
time. oodruff technique, resulting in a simplified algorithm for
« Estimating cascaded norndg(¢,) for all p, ¢ > 0. several of the above applications. Our key ingredient, édbb

« /1 sampling, where the goal is to produce an elemenith ~ the Precision Sampling Lemma (PSLs a probabilistic
probability (approximately)z;|/||z||1. It extends to similarly ~ method, concerned with estimating the sum of a number of
defined?,-sampling, forp & [1, 2]. real quantities. The PSL was introduced in [3, Lemma 3.12],

For all these applications the algorithm is essentially $aene:  jn an unrelated context, afuery-efficientlgorithms (in the

scale the vector entry-wise by a well-chosen random vector, and ; ; ; P
run a heavy-hitter estimation algorithm on the resultingtoe Our sense of property testing) for estimating the edit distance

sketch is a linear function of, thereby allowing general updates ~ Our overall contribution here is providing a generic ap-
to the vectorz. proach that leads to simplification and unification of a famil

Precision Sampling itself addresses the problem of estimat  of data-stream algorithms. Along the way we obtain new

sum>_._, a; from weak estimates of each real € [0, 1]. More 5,4 jmnroved bounds for some applications. We also give a
precisely, the estimator first chooses a desired precisian (0, 1] . . .
slightly improved version of the PSL.

for eachi € [n], and then it receives an estimate of every
within additive ;. Its goal is to provide a good approximation to In fact, all our algorithms comprise of the following two
>_a; while keeping a tab on the “approximation co3t;(1/u:).  simple steps: multiply the stream by well-chosen random

Here we refine previous work (Andoni, Krauthgamer, and Onak, . . ;
FOCS 2010) which shows that as long B8a: = (1), a good numbers (given by PSL), and then solve a certain heavy

multiplicative approximation can be achieved using totaigsion  hitters problem. Interestingly, each of the two steps (sepa
of only O(nlogn). rately) either has connections to or is a well-studied pobl

in the literature of data streams. Namely, our implemeaoitati
of the first step is somewhat similar ®riority Sampling
[16], as discussed in Section 1.3. The second step, the heavy
hitters problem, is a natural streaming primitive, studied
A number of recent developments in algorithms for dataat least since the work of Misra and Gries [28]. It would
streams have been inspired, at least in part, by a techniquee hard to list all the relevant literature for this problem
devised by Indyk and Woodruff [21] to obtain near-optimal concisely; instead we refer the reader, for example, to
space bounds for estimating, moments, fork > 2.  the survey by Muthukrishnan [30] and the CountMin wiki
Indeed, refinements and modifications of that technique wergite [13] and the references therein.
used for designing better or new algorithms for application
such as:F;, moments [6] (with better bounds than [21]),
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1. INTRODUCTION

. . _ 1.1. Streaming Applications
*The full paper is available at http:/arxiv.org/abs/1APB3.
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and by a Minerva grant. . .
§Supported in part by a Simons Postdoctoral Fellowship and §@nts we mamt‘_mn under stream updat_es. An update has the form
0732334 and 0728645. (7,0), which means that € R is added tox;, the ith



coordinate ofz.! The goal is to maintain a sketch of of

small size (much smaller thar), such that, at the end of the
stream, the algorithm outputs some function:ptiepending

on the actual problem in mind. Besides the space usage,
another important complexity measure is the update time —
how much time it takes to modify the sketch to reflect an
update(z, 9).

We study the following problenFor all these problems,
the algorithm is essentially the same (see the beginning of
Section 3). All space bounds are in terms of words, each
having O(log n) bits.

o Fix. moment estimation, for k > 2: The goal is to
produce &1 + ¢) factor approximation to thé-th mo-
ment ofz, i.e., ||z||¥ = 31", |z;|*. The first sublinear-
space algorithm fok > 2, due to [1], gave a space
bound n*~1/* . (¢~11ogn)®M), and further showed
the first polynomial lower bound fok sufficiently
large. A lower bound ofQ(n'~2/*) was shown in
[10], [4], and it was (nearly) matched by Indyk and
Woodruff [21], who gave an algorithm using space
n'=2/% . (e=11ogn)?M). Further research reduced the
space bound to essentially(n!~2/% . ¢=2-4/k log? p)

[6], [29] (see [29] for multi-pass bounds). Indepen-
dently of our work, this bound was improved by a
roughly O(log n) factor in [8].

Our algorithm for this problem appears in Section 3.1,
and improves the space usage over these bounds. Very
recently, following the framework introduced here, [17]
reports a further improvement in space for a certain
regime of parameters.

« Ip-norm estimation, for p € [1,2]: The goal is to
produce al + ¢ factor approximation td|x||,, just like
in the previous probler.The casep = 2, i.e., {o-
norm estimation was solved in [1], which gives a space
bound ofO(e~2logn). It was later shown in [20] how
to estimatel,, norm for allp € (0, 2], using p-stable
distributions, inO(e~2logn) space. Further research
aimed to get a tight bound and to reduce the update
time (for smalle) from Q(e~2) to log” Y n (or even
O(1) for p = 2), see, e.g., [31], [26], [27], [19] and
references therein.

Our algorithm for this problem appears in Section 3.2
for p = 1 and Section 4.1 for alp € [1,2]. The

algorithm has an improved update time, over that
of [19], for p € (1,2], and uses comparable space,

1We make a standard discretization assumption that all nsrieeve a
finite precision, and in particulag € {—-M,—-M +1,...,M — 1, M},
for M = n@M),

2Since we work in the general update framework, we will not be
presenting the literature that is concerned with restlity@es of updates,
such as positive updatés> 0.

O(e~?*7Plog®n). We note that, fopp = 1, our space
bound is worse than that of [31]. Independently of our
work, fast space-optimal algorithms for alle (0, 2)
were recently obtained in [25].

Mixed/cascaded norms:The input is a matrixz €
R™*", and the goal is to estimate thg(¢,) norm,

1/p
defined as|ally.g = (Sieiu (Cein 126519)77) /
for p,q > 0. Introduced in [15], this problem general-
izes thel,-norm/F,-moment estimation questions, and
for various values op andq, it has particular useful
interpretations, see [15] for examples. Perhaps the first
algorithm, applicable to some regime of parameters,
appeared in [18]. Further progress on the problem
was accomplished in [23], which obtains near-optimal
bounds for a large range of values pfg > 0 (see
also [29] and [18]).
We give in Section 4.2 algorithms for all parameters
p,q > 0, and obtain bounds that are tight up to
(e Tlogn)°M) factors. In particular, we obtain the
first algorithm for the regimez > p > 2 — no
such (efficient) algorithm was previously known. We
show that the space complexity is controlled by a
metric property, which is a generalization of théype
constantof ¢,. Our space bounds fall out directly from
bounds on this property.

o lp-sampling, for p € [1,2]: Here, the goal of the

algorithm is to produce an index € [n] sampled
from a distributionD,, that depends on, as opposed

to producing a fixed function of. In particular, the
(idealized) goal is to produce an indéxs [n] where
eachi is returned with probability|z;[?/|[z[|). We
meet this goal in an approximate fashion: there exists
some approximating distributiorD’, on [n], where

D! (i) = (1£¢€)|x;|/||z|1 & 1/n? (the exponent 2 here

is arbitrary), such that the algorithm outputgirawn
from the distributionD’,. Note that the problem would
be simple if the stream had only insertions (i®x 0
always); so the challenge is to be able to support both
positive and negative updates to the vector
The/,-sampling problem was introduced in [29], where
it is shown that the/,-sampling problem is a useful
building block for other streaming problems, including
cascaded norms, heavy hitters, and moment estimation.
The algorithm in [29] usege ! logn)°™") space.

Our algorithm for thel,-sampling problem, fop €
[1,2], appears in the full paper. It improves the space to
O(e P log®n). Very recently, following the framework
introduced here, [24] further improve the space bound
to a near-optimalbound, and extend the algorithm to
p € [0,1].

3The difference in notationp(vs. k) is partly due to historical reasons: All our algorithms maintain a linear sketdh: R — RS

the ¢, norm forp € [1,2] has been usually studied separately from the
F, moment fork > 2, having generally involved somewhat different

(i.e.

, L is a linear function), wheré&' is the space bound (in

techniques and space bounds. words, orO(S logn) in bits). Hence, all the updates may be



implemented using the linearity:(x + de;) = Lz + 6 - Le;,
wheree; is theith standard basis vector.

1.2. Precision Sampling

We now describe the key primitive used in all our

algorithms, the Precision Sampling Lemma (PSL). It has

originally appeared in [3]. The present version is improwved
two respects: it has better bounds and is streaming-fiyend|

The following lemma is stated in a rather general form.
Due to historical reasons, the lemma refers to precisions as
w; € [1,00), which is identical to our description above
via w; = 1/u;. Upon first reading, it may be instructive to
consider the special cage= 1, and letp = ¢ > 0 be an
absolute constant (say1 to match our discussion above).

Lemma 1.2 (Precision Sampling Lemma)ix an integer
n > 2, a multiplicative errore € [1/n,1/3], and an additive

PSL addresses a variant of the standard sum estimaticgrror p € [1/n,1]. Then there exist a distribution/ on the

problem, where the goal is to estimate the swr >
of n unknown quantitiesa; € [0,1]. In the standard

sampling approach, one randomly samples a set of indices , Accuracy: Consider arbitraryas, . ..

I C [n], and uses these;'s to compute an estimate such
as 71 >_;es ai- Precision samplingconsiders a different

scenario, where the estimation algorithm chooses a sequenc

of precisionsu; € (0, 1] (without knowing thez,’s), and then
obtains a sequence of estimafgeghat satisfy|a; —a;| < u;,
and it has to report an estimate for the sare= )", a;. As
it turns out from applications, producing an estimate with
additive erroru; (for a singlea;) incurs costl /u;, hence the
goal is to achieve a good approximationstavhile keeping
tabs on the total cost (total precisiop), (1/u;).*

To illustrate the concept, consider the case whigre<
o < 20, and one desires A1 multiplicative approximation
to o. How should one choose the precision® One ap-

proach is to employ the aforementioned sampling approacﬁ:

choose a random set of indicésC [n] and assign to them
a high precision, say,; = 1/n, and assign trivial precision

u; = 1 to the rest of indices; then report the estimate

& = 711 2ieq @i This way, the error due to the adversary's
response is at mos > ierlai—ai| <1, and standard sam-
pling (concentration) bounds prescribe settjdig= O (n).
The total precision become3(n - |I|) = ©(n?), which is
no better than naively setting all precisioms= 1/n, which
achieves total additive errdrusing total precisiom?. Note
that in the restricted case where @JI< 40/n, the sampling
approach is better, because settidy = O(1) suffices;
however, in another restricted case whereaalle {0, 1},
the naive approach could fare better, if we setal= 1/2.
Thus, total precisiorO(n) is possible in both cases, but by

a different method. We previously proved in [3] that one can

always choosev; randomly such thap_ w; < O(nlogn)
with constant probability.
In this paper, we provide a more efficient version of

real interval [1, c0) and a reconstruction algorithn®, with
the following two properties.

,an € 10,1] and
f€[1,1.5]. Letws,...,w, be chosen at random from
W pairwise independentf.Then with probability at
least 2/3, when algorithmR is given {w;},c[, and
{ai}iem) Such that eachi; is an arbitrary (1/w;, f)-
approximator ofa;, it producess > 0 which is a(p, f -
e)-approximator tos £ 3" a;.

Cost: There isk = O(1/pe?) such that the conditional
expectationE,ew [w | M] < O(klogn) for some
eventM = M (w) occurring with high probability. For
every fixedx € (0,1), we haveE, ¢y [w] < O(k%).
The distribution)V = W(k) depends only ot.

We emphasize that the probabili2y3 above is over the
:hoice of {w;}c[,) and holds (separately) for every fixed
setting of {a;}ic[,). In the case where is randomized,
the probability2/3 is also over the coins oRR. Note also
that the precisionsv; are chosen without knowing;, but
the estimatorsi; are adversarial — each might depend on
the entire{a; }ic[,,) and{w; };c[n), and their errors might be
correlated.

In our implementation, it turns out that the reconstruction
algorithm uses onlyi;’s which are (retrospectively) good
approximation toa; — namelya; > 1/w; — hence the
adversarial effect is limited. For completeness, we also
mention that, fork = 1, the distribution®V = W(1) is
simply 1/u for a randomu € [0, 1]. We present the complete
proof of the lemma in Section 2.

It is natural to ask whether the above lemma is tight. In
the full paper, we show a lower bound @,y [w] in the
considered setting, which matches our PSL bound up to a
factor of 1/e. We leave it as an open question what is the
best achievable bound for PSL.

PSL (see Section 2 for details). To state the lemma, wéd.3. Connection tdriority Sampling
need a definition that accommodates both additive and \we remark that (our implementation of) Precision Sam-

multiplicative errors.

Definition 1.1 (Approximator) Let p > 0 and f € [1,2].
A (p, f)-approximatorto 7 > 0 is any quantity; satisfying
7/f—p <7< fr+p. (Without loss of generality; > 0.)

4Naturally, in other application, other notions of cost magpke more
sense, and are worth investigating.

pling has some similarity t&riority Sampling[16], which
is a scheme for the following problefnwWe are given a
vectorz € R of positive weights (coordinates), and we

SThat is, for alli < j, the pair(w;,w;) is distributed agV?.

6The similarity is at the more technical level of applying tRSL in
streaming algorithms, hence the foregoing discussionafigtuefers to
Sections 2 and 3.



want to maintain a sample of weights in order to be

by algorithm R’, we can think ofu;1,...,u;, as being

able to estimate sums of weights for an arbitrary subsethosen i.i.d. fromU (0, 1). Observe also that whenevéy

of coordinates, i.e.) ., z; for arbitrary setsI C [n].

is a (1/w;, f)-approximator toa;, it is also a(u;;, f)-

Priority Sampling has been shown to attain an essentiallgpproximator toa; for all j € [k].

best possible variance for a sampling scheme [32].

We now build a more efficient deterministic algorithfh

The similarity between the two sampling schemes is thehat performs at least as well &. Specifically,R does not

following. In our main approach, similarly to the approachgenerate the, ;'s (from the givenw;’s), but rather sets;

in Priority Sampling, we take the vectar € R”™, and
consider a vector, where y; x;/u;, for u; chosen at
random from[0, 1]. We are then interested in heavy hitters
of the vectory (in ¢; norm). We obtain these using the
CountSketch/CountMin sketch [11], [14]. In Priority Sam-
pling, one similarly extracts a set &f heaviest coordinates
of y. However, one important difference is that in Priority
Sampling the weights (and updates) are positive, thus ma

def

£ [Zje[k] siyj | MiNjep iy = 1/%} and s = 37, si
A simple calculation yields an explicit formula, which is
easy to compute algorithmically:

.

1 k=1  aw;/t—1,
E+ k w;—1

otherwise

Ve proceed to the analysis of this construction. We will first

ing it possible to use Reservoir sampling-type techniqaes tconsider the randomized algorithiY, and then show that

obtain the desired heavy hitters. In contrast, in our sgttin

derandomization can only decrease the error.

the weights (and updates) may be negative, and we need Proof of Lemma 1.2: We first give bounds on the

to extract the heavy hitters approximately and hence pos

process them differently.

moments of the distributionV. Indeed, recall that by

L We define the event/ to be

uj

... def
definition w = max¢

See also [12] and the references therein for streaminghatw < n° note thatPr[M] > 1—k-n"> > 1-0(n"?).
friendly versions of Priority Sampling and other related Conditioned ona, eachu; € U(n~°,1), and we have

sampling procedures.

2. PROOF OF THEPRECISIONSAMPLING LEMMA

In this section we prove the Precision Sampling Lemma _ o .
(Lemma 1.2). Compared to our previous version of PSLNow fix o € (0,1). It is immediate thatE[1/u®]

from [3], this version has the following improvements: a
better bound or,, <y [w] (hence better total precision), it
requires thew;'s to be only pairwise independent (hence
streaming-friendly), and a slightly simpler constructimd
analysis via its inverse = 1/w. In the full paper we show
a lower bound for the total precision.

The probability distribution W. Fix k = (/pe® for
sufficiently large constanf > 0. The distribution)V takes
a random valuev € [1,00) as follows: pick i.i.d. samples
u1,...,ur from the uniform distributionU(0,1), and set
w = max;c () 1/u;. Note thatWy depends ork only.

The reconstruction algorithms. The randomized recon-
struction algorithmR’ gets as inpu{w; }ic(,) @and{a; }icn
and works as follows. For each € [n], samplefk i.i.d.
random variablesy,; ; € U(0,1) for j € [k], conditioned
on the event{w; = max ¢ 1/u;;}. Now define the
“indicators” s, ; € {0,1/k}, for eachi € [n],j € [k], by
setting

det
Si,j =

Finally, algorithm R’ setss = 2 icn).jek) Si.; and reports
& £ st as an estimate for = > a;i. A key observation

def

if Ui, j < dl/t for t = 4/6,
otherwise

1/k
0

1 1 11 5 In(n®)
jn*f’ z dx = 1—n—5"

uj 1-n

Thus

—5

Evew [w| M] < E [ & | M] < O(klogn).

J

O(1/(1 — «)). We can similarly prove thaE,,cyy [w®] <
O(k*/(1 — «)), but the calculation is technical, and we
include its proof in Appendix A.

We now need to prove that is an approximator tar,
with probability at leas2/3. The plan is to first compute the
expectation o¥; ;, for eachi € [n], j € [k]. This expectation
depends on the approximator valugés which itself may
depend (adversarially) om;, so instead we give upper and
lower bounds on the expectatidiifs; ;] ~ #. Then, we
wish to apply a concentration bound on the sunsof, but
again thes; ; might depend on the random values so we
actually apply the concentration bound on the upper/lower
bounds ofs; ;, and thereby derive bounds en= )" s, ;.

Formally, we define random variable§i,j,§i7j €
{0,1//€} We sets; ; = 1//€ iff Ui < fai/(t — 1), and0
otherwise. Similarly, we sef, ; = 1/kiff u; ; < a;/f(t+1),
and0 otherwise. We now claim that

1)

Indeed, ifs; ; = 1/k thenw;; < a;/t, and hence, using
the fact thata; is a (u; ; , f)-approximator toa;, we have
Ui < fai/(t — 1), ors;; = 1//€ Slmllarly, if Sij = 0,
thenw; ; > a;/t, and henceu; ; > a;/f(t+ 1), ors, ; =

0. Notice for later use that each ¢f; ;} and{s, ;} is a
collection ofnk pairwise independent random variables. For

S5 < Sij < 8ije

is that altogether, i.e., when we consider both the coingase of notation, define =13, ; s, ; andé = tD i S

involved in the choice otv; from W as well as those used

and observe that < & < 6.



We now boundE [5; ;] andE [s, ;]. For this, it suffices to
compute the probability that; ; ands, ; are 1/k. For the
first quantity, we have:

fai
t—1

<ePf-4(2)

Pr |:§i.,j = %:| = Pr [ui_j S tfi171:| =
where we used the fact that- 1 > e~</2t. Similarly, for

the second quantity, we have:

Pr [§i,j = ﬂ = Pr {u” < %} — % >
3)
Finally, using Eqn. (1) and the fact thaE[s] =

—e/2 p—1 i
e=/?f AL

We now do a similar calculation foy_, 5}, but since each
s, is completely determined from the knows, the first

summand is jus) and in the second summand we can
change each’, to s5;, formally

Var [}, 5] = E[Var [3_,;5; | w]] + Var [E[3; 5; | @]
(6)

Egns. (5) and (6) imply that in the deterministic algorithm
the variance (of the upper bound) can indeed only decrease.
The analysis for the lower bound is analogous, usindAs

~ Var[E[Y;5 | 4.

>, E[s:,], we can bound the expectation and variance ofefore, using the fact that tfig are pairwise independent

o = st as follows:

e Pflo <ty Els, ;| <E[6] <ty E[sis] <e/?fo,

] (]

(4)
and, using pairwise independendér [6], Var [6] < t* -
> k*2~e€/2-% < 4tk~1o. Recall that we want to bound
the'probability thatr and & deviate (additively) from their
expectation by roughlyo + p, which is larger than their
standard deviatio®(vtk~1o) = O(,/pea).

Formally, to bound the quantity itself, we distinguish
two cases. First, consider> p/e. Then for our parameters
k= (/pe* andt = 4/,

Pr §>ee/2fa-(1+e/2)} <Pr [E—E[E} >e/2-efo

Var[5] 4tk~lo _ O(p/eC)
= (e/2e fo)? = 2o2/4 < pa <0.1

for sufficiently large¢. Similarly, Prjg < f~le </?c -
e~</?] <0.1.
Now consider the second case, whert p/e. It holds
Pr [5 > fe€/20+p] <Pr [5_ E[5] > p]

Var [5]
2

< < 4tk;12»p/6 <0.1.

Similarly, we havePr[gc < f~'e=“/2c — p] < 0.1. This
completes the proof that is a (p, fe®)-approximator too,
with probability at leasg/3.

(because thev; are) we apply Chebyshev’s inequality to
bound deviation for the algorithn®’s actual estimaté =

t> ;s [
3. APPLICATIONSI: WARM-UP

We now describe our streaming algorithms that use the
Precision Sampling Lemma (PSL) as the core primitive. We
first outline two generic procedures that are used by several
of our applications. The current description leaves some
parameters unspecified: they will be fixed by the particular
applications. These two procedures are also given in pseudo
code as Alg. 1 and Alg. 2.

As previously mentioned, our sketch function is a linear
function L : R* — R mapping an input vector € R”
into R, whereS is the space (in words). The algorithm is
simply a fusion of PSL with a heavy hitters algorithm [11],
[14]. We use a parameter> 1, which one should think of
as thep in the £,-norm estimation problem, and = k in
the £}, moment estimation. Other parameters ares (0,1)
(additive error)e € (0,1/3) (multiplicative error), andn €
N (a factor in the space usage).

The sketching algorithm is as follows. We start by initial-
izing a vector ofw;’s using Lemma 1.2: specifically we draw
wy's from W = W(k) for k = ;. We usel = O(logn)
hash tableq H,} ;c;;;, each of sizem. For each hash table
H,, choose a random hash functién : [n] — [m], and
Rademacher random variablgs : [n] — {—1,+1}. Then
the sketchLzx is obtained by repeating the following for

Finally, we argue that switching to the deterministic every hash tablg € [|] and indexi € [n]: hash index
algorithm R only decreases the variances without affect-i € [n] to find its cellh;(i), and add to this cell’s contents
ing the expectations, and hence the same concentratiahe quantityg; (i) .xiwil/P_ Overall, S = Im.

bounds hold. Formally, denote our replacement fgr
by s; = Eu,, [Zje[k] 847 | max;epy 1/u;; = w; |, and
note it is a random variable (because of). Define
5. =E [Zjem iy | maxjep 1/usj = wi], and by apply-
ing conditional expectation to Eqn. (1), we have< 3.
We now wish to bound the variance df,s;. By the law
of total variance, and using the shorthatid= {w;},

Var [}, 5] =E[Var [}, 5; [ @]] + Var [E[3 ;5 | w]gé)

The estimation algorithm® proceeds as follows. First
normalize the sketcl.z by scaling it down by an input pa-
rameter € R.. Now for eachi € [n], compute the median,
over thel hash tables, of theth power of cells wherg falls
into. Namely, letz; be the median ofH;(h;(:))|” /rw, over
all j € [I]. Then run the PSL reconstruction algoritifnon
the vectors{Z;};c,,; and {w;};c[,,), to obtain an estimate
¢ = 6(r). The final output is~- 6(r).

We note that it will always suffice to use pairwise inde-
pendence for each set of random varialles};, {g; (i)},



and {h;(i)}; for eachj € [I]. For instance, it suffices to
draw each hash functioh; from a universal hash family.

Finally, we remark that, while the reconstruction Alg. 2 w = 9E,cw [wg/ﬂ, and note thatv < O(p

takes time €2(n), one can reduce this to timen -

(e~11logn)PM by using a more refined heavy hitter sketch.

We discuss this issue later in this section.

Algorithm 1: Sketching algorithm for norm estimation.
Input is a vectorr € R™. Parametersp, ¢, p, andm are
specified later.

1 Generate{w; },c|, as prescribed by PSL, using
W=W(k) for k = (p~te 2.

2 Initialize | = O(logn) hash tableddy, ..., H;, each of
sizem. For each tabled;, choose a random hash
function h; : [n] — [m] and a random
gj + [n] = {~1,+1}.

3 for eachj € [I] do

4 Multiply = coordinate-wise with the vectors

{wil/p}ie[n] andg;, and hash the resulting vector
into the hash tablé{;. Formally,

. 1
Hi(2) 2 X iy=s 95(0) ;P

Algorithm 2 : Reconstruction algorithm for norm estima-
tion. Input consists of hash tabled?;, precisionsw; for

i € [n], and a realr > 0. Other parameters, ¢, p, m
are as in Alg. 1.

1 For eachi € [n], compute
Z; = median e {7‘Hj(hjufj))/rlp }

2 Apply PSL reconstruction algorithr® to vector
(Z1,...2&,) and (w1, ... w,), and leté be its output.
EpricitIy, for eachi € [n], if #;w; >t = 4/e, then set
s 2 L el B/l (recall k= Cpte 2 from
PSL), otherW|se91 = O then, letc =t )", s;.

3 Outputr - 6.

3.1. EstimatingF}, Moments fork > 2
We now present the algorithm for estimatihg moments

for k > 2, using the PSL Lemma 1.2. To reduce the C|aShapprOX|mator t0|a:1|P Indeed ,f|5|/w1/P

of parameters, we refer to the problem ak,“moment
estimation”.

Theorem 3.1.Fix n > 8, p > 2, and0 < ¢ < 1/3. There
is a randomized linear functiod : R* — R, with S =
O(n'=2/P . p2e=2-4/Plogn), and a deterministic estimation
algorithm £ : R® — R, such that for every: € R", with
probability at least0.51, its outputE(L(x)) approximates
[|z[|5 within factor 1 + e.

Proof of Theorem 3.1:Our linear sketchl is Alg. 1,
and the estimation algorithrf is Alg. 2, with the following

gL Let W = W(k),

Cp~'e 2, be from PSL Lemma 1.2. Define
—2/pe=4/p)
by Lemma 1.2. Finally we sets = a - O(p~2/Pe=4/?) so
thatm > aw, wherea = a(p,¢) > 1 will be determined
later.

In Alg. 2, we setr to be a factorl — 1/p approximation
to ||z||2, i.e., (1 —1/p)||z||2 < r < ||z]|2. Note that such is
easy to compute (with high probability) using, say, the AMS
linear sketch [1], withO(p? logn) additional space. Thus,
for the rest, we will just assume thét:|, € [1 — 1/p, 1]
and setr = 1.

The plan is to apply PSL Lemma 1.2 where each unknown
valueq; is given by|z;|?, and each estimatg, is given by
;. For this purpose, we need to prove that ths are good
approximators. We thus lef, = Z?:l(a:iwil/p)? Note
that E [F3] = ||z[|3 - Ewew [w??] < w/9, and hence by
Markov’s inequality, with probability at least/9 we have
F2 S w.

Claim 3.2. Assume thaty, < w. Then with high probability
(say> 1—1/n?) over the choice of the hash tables, for every
i € [n] the valuez; is a (1/w;, e°)-approximator to|z;|?.

choice of parameters. Lei =
for k

Proof: We shall prove that for each € [n] and
j €[], with probability > 8/9 over the choice of:; and
g;, the value% is a (1/w;, e®)-approximator to
|z;|P. Recall that eacti; is the median of H;(h; (i) /w;
over I = O(logn) values of j, we get by applying a
Chernoff bound that with high probability it is @ /w;, e°)-
approximator to|z;|P. The claim then follows by a union
bound over alli € [n].

Fix i € [n] andj € [l], let Y £ H;(h;(i)). For
f € [n], definey; = g;(f) - apwy/” if hi(f) = (i)
and 0 otherwise. Ther’ = y; + § where§ = Z#i Y-
Ideally, we would like that|Y|? lyi|P | [Pw;,
e., the effect of the errob is small. IndeedE [4?]
E[(Z#i ?/f)Q} Zf#(arjwf/”) < F,/m. Hence,
by Markov’s inequality, || < \/9F:/m < 3/y/a with
probability at leasB/9.

We now argue that if this ever16| < 3/\/a occurs,
then M ly‘p = |g; i)z + 5/wl/p\p is a good

< 55|, then

~
~

clearly —- e = (14 5;)P|zi|P. Otherwise, sincéy| < 3/,
we have that
Y1 =zl < (o)) + 1017 = w7
< (218l + ol = (2laD?
< o @p/er (145 1)
< (6p)?- el—p/ap/2

If we seta = (6p)?/e2~2/P, then we obtain tha{— is
a (1/w;, e¢)-approximator to|a:1|P with probability at least



8/9. We now take median oveD(logn) hash tables and at least 2/3. By a Chernoff bound, their median

apply a union bound to reach the desired conclusionm

&; = median;e( {W} is a (1/w;, 1)-approximator

We can now complete the proof of Theorem 3.1. Applyto |z;|/r with probability at leastl — n~2. Taking a

PSL (Lemma 1.2) witha; = |2;/? and 4, = ;'s. By
Holder’s inequality forp/2 and the normalization = 1, we
have||z||? > ||lz||5/n?/2~* > p/e, and thus additive errqs
transforms to multiplicative errar+e¢. It remains to bound
the space:S < O(mlogn) = O(ap=2/Pe=*/Plogn) =
O(p?/e>=2/P.e=6/Pp1=2/P Jogn) = O(p>n'—2/P.e—2=4/p.
logn). |

3.2. Estimating?/; Norm

To further illustrate the use of the Alg. 1 and 2, we now

show how to use them for estimating thenorm. In a later
section, we obtain similar results for d)), p € [1, 2], except
that the analysis is more involved.

We obtain the following theorem. For clarity of presenta-
tion, the efficiency (space and runtime bounds) are disduss

separately below.

Theorem 3.3. Fix n > 8 and 8/n < ¢ < 1/8. There is
a randomized linear functio. : R* — R%, with S =
O(e3log®n), and a deterministic estimation algorithf :
R® — R, such that for every: € R", with probability at
least 0.51, its output E(L(z)) approximates||z||; within
factor 1 + e.

Proof: The sketch functiorl. is given by Alg. 1, with
parametery = 1, p = ¢/8, andm = Ce 3logn for
a constantC' > 0 defined shortly. Letw = W(k) for

k = (p~'e 2 be obtained from the PSL Lemma 1.2. Define

w = 10Eyew [w | M], where eventM = M (w) satisfies
Pr[M] > 1 — O(n~?). Note thatw < O(e~3logn). We set
constantC' such thatm > 3w.

union bound over alli € [n] and applying the PSL
(Lemma 1.2), we obtain that the PSL outpéit= &(r) is
an (e/8,e)-approximator tol|z||; /r, with probability at
least2/3 —1/9 — 1/n? > 0.6.

Now, if we hadr < 4||z||;, then we would be done ag
would be a(e||z||1 /2, e°)-approximator td|«||;, and hence a
142 multiplicative approximator (and this easily transforms
to factor1+ e by suitable scaling of). Without such a good
estimater, we try all possible values that are powers of,
from high to low, until we make the right guess. Notice that
it is easy to verify that the current guess sufficiently large
that we can safely decrease it. Specifically, if 4||z||; then
ré < ef||z|1+er/8 < (r/4)-[1+3e/2+¢€/2] = (14+2¢)r/4.
However, ifr < 2||z|; thenré > e ¢||x||1 —er/8 > (r/2)-

ﬁl —€—¢/4 > (1 + 2¢)r/4. We also remark that, while

we repeat Alg. 2 forO(logn) times (starting fromr =
nPM suffices), there is no need to increase the probability
of success as the relevant evefits= {) . |z;w;| < rm/3}
are nested and contain the last one, whefier||; € [1,4].

[ |

3.3. The Running Times

We now briefly discuss the runtimes of our algorithms: the
update time of the sketching Alg. 1, and the reconstruction
time of the Alg. 2.

It is immediate to note that the update time of our
sketching algorithm isO(logn): one just has to update
O(logn) hash tables. We also note that we can compute
a particularw; in O(logn) time, which is certainly doable

The estimation procedure is just several invocations Ohs,; may be generated directly from the seed used for the
Alg. 2 for different values of-. For the time being, assume pajrwise-independent distribution. Furthermore, we rioé

we hold an overestimate dfx|;, which we callr > ||z||;.
Then algorithm £ works by applying Alg. 2 with this
parameter-.

Let F} = Z?:l |I1’LUZ|/T Note thatE [Fl | ﬂlM(wZ)] =
lz|l1 /7 Ewew [w | M(w)] < w/10, and hence by Markov’s
inequality, /i < w < m/3 with probability at leas®/10 —

O(n/n?) > 8/9. Call this event,., and assume henceforth

it indeed occurs.
To apply the PSL, we need to prove that eaglin Alg. 2
is a good approximator ta,. Fix i € [n] andj € [l]. We
claim that, conditioned ow’., the with probability at least
2/3, W is a (1/w;, 1)-approximator oflx;|. Indeed,
% = 295 0Ti + 5 X psin, (5= i) 95 (Hwres,
and thus,
E H |H;(hy (@) il

TWw; T

1 1 F 1
| <" Blapuyl < 2 < b
f#i

inequality,M is a

Hence, by Markov’s -
|z;|/r  with  probability

(1/w;, 1)-approximator  of

we can sample from the distribution’ = W(k) in O(1)
time (see, e.g., [22]).

Now we turn to the reconstruction time of Alg. 2. As
currently described, this runtime i©(nlogn). One can
improve the runtime by using the CountMin heavy hitters
(HH) sketch of [14], at the cost of é)(log(“’f")) factor
increase in the space and update time. This improvement is
best illustrated in the case df estimation. We construct
the new sketch by just applying th®(t/m)-HH sketch
(Theorem 5 of [14]) to the vectar-w (entry-wise product).
The HH procedure returns at moSt(m/t) coordinates;,
together with(1/w;, e“)-approximatorsz;, for which it is
possible that;w; > t (note that, if the HH procedure does
not return some index, we can consider 0 as being its
approximator). This is enough to run the estimation proce-
dure E from PSL, which uses onlys for which z;w; > t.
Using the bounds from [14], we obtain the following guar-
antees. The total space (¢! 1ognlog(l°%) -m/t) =
O(mlogn - log(2%81)) = O(e 3 log?n - log('&™)). The

€ €




update time isO(logn - log(“’%)) and reconstruction time  time, until we obtain a good estimatgz||, < r < 4|z,
is O(loan-log(l‘)%)). (alternatively, one could prepare for all possibfs). To

To obtain a similar improvement in reconstruction time for simplify the exposition, let us just assume in the sequél tha
the F,-moment problem, one uses an analogous approach,= 1 and thusl/4 < ||z|[, < 1.

except that one has to use HH with respect to#haorm, Let F, = > I | |=i[Pw;. Note thatE [F, | N;M (w;)] =
instead of the/; norm (considered in [14]). ][5 - Ewew [w | M(w)] < w/10, and hence by Markov's
inequality, F,, < w with probability at leas®/9. Call this
4. APPLICATIONSII: BOUNDS VIA p-TYPE CONSTANT event& and assume henceforth it occurs. To apply PSL,

In this section, we show further applications of the PSLwe need to prove that every; from Alg. 2 is a good
to streaming algorithms. As in Section 3, our sketchingapproximator tox;.
algorithm will be linear, following the lines of the generic
Alg. 1.

An important ingredient for our intended applications will
be a variation of the notion gf-typeof a Banach space (or,
more specifically, the-type constant). This notion will give Proof: Fix j € [I]; we shall prove thatt;(h;(i))|? is a
a bound on the space usage of our algorithms, and hence wé, 1 + ¢)-approximator tgz;|Pw;, with probability at least
will bound it in various settings. Below we state the simples 2/3. Then we would be done by Chernoff bound,iads a
such bound, which is a form of the Khintchine inequality. median overl = O(logn) independent trialg < [I].

For f € [n], defineys = g, (f) - wiw;’? i h;(f) = h;(i)
andy; = 0 otherwise. Definey” £ H;(h;(i)) = y; + 6,
whered = Z#i y¢. We apply Lemma 4.1 to conclude that
E[|§[P] < F,/m, and henced|? < 3w/m < 3/a with
probability at least2/3. Assume henceforth this is indeed
the case.

E H 2 giXiti Now we distinguish two cases. First, suppqxsmil/ﬂ >

Furthermore, suppose each family of random variables: - |0]- Then[Y | = (1 ¢/2)[a;[Pw;. Otherwise/z;w;”| <
{g:}: and {x;}: is only pairwise independent and the two % - |d], and then
families are independent of each other. Then, with probabil
ity at least 7/9, we have that

P
ZgiXiIi

< 3% Pz,
K2

Claim 4.3. AssumeF, < w and fixi € [n]. If a >
32tPel=r | then with high probability,; is a (1/w;,e)-
approximator to|z;|P.

Lemma 4.1. Fix p € [1,2], n > 1 and z € R™. Suppose
that for eachi € [n] we have two random variableg; €
{=1,+1} chosen uniformly at random, ang; € {0,1}
chosen to bé with probabilitya € (0, 1) (and0 otherwise).
Then »

| < allef.

(Jazj0; /| + |68])P — |z, PP
167 ((2/e + 1)7 = 2/¢)
167 - (2/€)” - (1 +pe — 1)
p2P -3 7P /a.

Y17 = i 77

IA A CIA A

Th f of this | in the full .
© proot ot this femma appears in the Tull paper Thus, if we seta > 3277(1/¢)P~1, then in both cases

4.1. ¢,-norm forp € [1,2] |Y'|P is a (1, e)-approximator to|x;|[Pw; (under the event
that occurs with probability at leagt/3). ]

We can now complete the proof of Theorem 4.2. Applying
Lemma 1.2, we obtain that its output, = &(r), is a
Theorem 4.2.Fix p € [1,2],n > 6,and0 < e < 1/8. There  (¢/8, ¢>*)-approximator to||z||,, with probability at least
is a randomized linear functiod : R* — R, with S = 2/3—-1/9—1/n%>0.51. ]
O(e~*7Plog®n), and a deterministic estimation algorithm
E, such that for everyr € R”, with probability at least
0.51, E(L(z)) is a factor1 + ¢ approximation tol|z|[?. We now show how to estimate mixed norms such as the
l,q norms. In the latter case, the input is a matixe
Rmm2and thef,, , normis||z||,.o = (32, [|#:]|2)'/?, where
x; IS theith row in the matrix.

We show a more general theorem, for the naiy(X),
Note thatw < O(c~3 logn). We setm — aw for a constant which is defined similarly fc_)r a general Banach spatcehe

£, norms will be just particular cases. To state the general

«a > 0 to be determined later. . o
. . result, we need the following definition.
We now describe the exact reconstruction procedure,

which will be just several invocations of the algorithm 2 for Definition 4.4. Fix p > 1, n,k € N, w > 0, § € [0,1),
different values ofr. As in Theorem 3.3, we guess> 0  and let X be a finite dimensional Banach space. Tthe
starting from the highest possible value and halving it eaclyeneralizeg-type, denotedy(X, p, n, k,w, d), is the biggest

We now use Alg. 1 and 2 to estimate tlig norm for
p € [1,2]. We use Lemma 4.1 to bound the space usage.

4.2. Mixed and cascaded norms

Proof: Our sketch functionl. is given by Alg. 1. We
setp = ¢/8. Let W = W(k) for k = (p~'e 2 obtained
from the PSL (Lemma 1.2). Define = 10E,, ey [w | M],
where eventM = M (w) satisfiesPr[M] > 1 — O(n~2).



constanta > 0 satisfying the following: For each € [n],  choice ofa = a(p, X, €, n), for eachj € [I], || H,(h;(i))[%
let g; € {—1,+1} be a random variable drawn uniformly is a (1,1 + ¢)-approximator tol|z;|/% w;, with probability
at random, and lely; € {0,1} be a random variable thatis at least2/3. This would imply that, since; is a median
equall with probability 1/« and 0 otherwise. Furthermore, over O(logn) independent trialsiz; is a (1/w;, 1 + €)-
each family{g;}; and {x}; is x-wise independent, and the approximator to|z;||%. Once we have such a claim, we
two families are independent of each other. Then, for evergpply Lemma 1.2, and conclude that the outgut: &(r),
T1,... 2o € X satisfyingy”, i, [zl < w, is a (¢/8, 1+ 2¢)-approximator to||z||, x, with probability
at least2/3—-1/9—1/n > 0.51.

. xizillF < }> — 4. . .
PY{HZZG["]%M%HX—I z1-9 Clam 4.6. Fix p > 1 and w € R,. Let m =
Theorem 4.5.Fix p > 1,n > 2, and0 < ¢ < 1/3. LetX be (X, p, %, 3pw/e,2/3), the generalizeg-type of.X.

a Banach space admitting a linear sketbl : X — R5x, Assumel%_y;_( < woand fixi € [n],j € Z[)l]- Then
with spaceSy = Sx(e), and let Ex : RSx — R be its ||Hj(hj.(_z))||X is a (1, 1+¢)-approximator to||z; || w; with
reconstruction procedure. probability at least 2/3.

Then there is a randomized linear functién X" — RS, Proof: For f € [n], definey; = g;(f) - zw'/?

and an estimation algorithny which, for anyz ¢ X", i 5. () = hy (~) and y; = 0 otherwise. Thena £

iven the sketch.x, outputs a factorl approximation
b | th probabilty at | 1051JrE PP qu"lah i odyre ot X, G
z||p,x, with probability at least).51. Then, by the def|n|t|0n of generalizeetype of X, whenever
Furthermore, S < Sx(€/2)  + m>a(X,p kw2, 2/3), we have tha|]| x < ¢/3, with

a(X,p,n,k,O(pe~*logn),2/3) - O(logn), where £ probability at lease/3.

is such that each functiog; and h; is x-wise independent. Now we distinguish two cases. First, suppose
We note that the result fof,, norms will follow by  llziw; "llx > 2 [3]|x. Thenllal[% ~ (1 % e[|z |5 w:.

proving some particular bounds on the parameterthe  Otherwise, if||z;w,/"||x < 22 ||6]|x, then

generalizedp-type. We discuss these implications after the

P
proof of the theorem. o lall% < (lziw!x + 19]x) " < @pldllx/e + 18] x)7
Proof of Theorem 4.5:0ur sketch functiorl is given
by algorithm 1, with one notable modification;'s are now < |I8]% - (2p/e +1)? < 1.

vectors fromX and the hash table cells hold sketches given

by sketching functiorl.x up to 1 + ¢/2 approximation. In - Hence, we conclude thdjul|% (and thus| H; (h;(i))|/%) is
particular, each cell of hash tablé;(z) = >, (;—.9;(i)-  a (1,1 + ¢)-approximator to||z; || w;, with probability at

w!’? . Lyx;. Furthermore, abusing notation, we use theleast2/3. ]

notation || H;(z)|, for somez € [m] to mean the result The claim concludes the proof of Theorem 4.5.

of the E-estimation algorithm on the sketdf; (z) (since it Note that the space isS = O(Sx(€/2)

is al + ¢/2 approximation, we can afford such additional a(X,p, x, O(pe~*logn),2/3) - logn). [ |

multiplicative error). We now show the implications of the above theorem. For
We setp = ¢/8. Let W = W(k) by for k = this, we present the following lemma, whose proof appears

(p~'e~? obtained from the PSL Lemma 1.2. Define=  in the full paper.

10E,ew [w | M], where eventM =
Pr[M] > 1 — O(n~2). Note thatw <
setm later.

We now describe the exact reconstruction procedure,
which will be just several invocations of the algorithm 2 for (a)) if 0 <p < ¢ <2, thena({,p, n,2,w,2/3) < O(w).
different values of-. As in Theorem 3.3, we guessstarting (D)) if p,¢ > 2, we have thata (7", p,n,2¢,w,2/3) <

(w) satisfies

M i -
O(e~*logn). We Lemma 4.7. Fix n,m € N, w € R4, and a finite

dimensional Banach spacé. We have the following bounds
on the generalizeg-type:

from high and halving it each time, until we obtain a good 92qOWw?/P . n!=2/P and if ¢ > 2 and p € (0,2),

estimate —||z||, x <r < 4|z|,.x (alternatively, one could thena(4, p,n,2q,w,2/3) < 9%¢OMw?/?,

prepare for all possible’s). For simplified exposition, we (¢)) for p > 1, we have thata(X,p,n,2,w,2/3) <

just assume that/4 < ||z, x < 1 andr = 1 in the rest. O(n'=/Pu,'/P), and forp € (0,1), we have that
Let F, x = Zl 1 [|z;w 1/pHp Note that a(X,p,n,2,w,2/3) < O(wl/p)'

E[Fpx | NM(wy)] = ||zl - Buew [w| M(w)] < w/10, Combining Theorem 4.5 and Lemma 4.7, also using

and hence,Fp,X < w with probability at least8/9  thegrem 3.1, we obtain the following linear sketches for
by Markov’s bound. Call this evenE. To apply PSL, ¢,., norms, which are optimal up te— " log n)O() factors
we need to prove thatt;’s from Alg. 2 are faithful (sée e.g., [23)).

approximators. For this, we prove that, for appropriate



Corollary 4.8. There exist linear sketches fé§ (¢;2), for
ni,ne < n andp,q > 1, with the following space bounds
S.

(16]

For 0 < p < ¢ <2, the bound isS = (¢~ logn)°M, (7]
If ¢g>2,p€e(0,2), thenS = n§—2/q - (pge"logn)°W, [18]
If p,qg > 2, thenS = nifQ/pnéfz/q - (pgelogn)°W).
If p>1,qe(0,p), thenS = nifl/p - (e7'1ogn)OM), [19]
If p€(0,1), ¢ € (0,p), thenS = (¢ logn)°W),

[20]
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