
Approximating Edit Distance in Near-Linear Time

Alexandr Andoni
MIT

andoni@mit.edu

Krzysztof Onak
∗

MIT
konak@mit.edu

ABSTRACT
We show how to compute the edit distance between two

strings of length n up to a factor of 2Õ(
√

log n) in n1+o(1) time.
This is the first sub-polynomial approximation algorithm
for this problem that runs in near-linear time, improving
on the state-of-the-art n1/3+o(1) approximation. Previously,

approximation of 2Õ(
√

log n) was known only for embedding
edit distance into ℓ1, and it is not known if that embedding
can be computed in less than a quadratic time.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms

Keywords
approximation algorithms, edit distance, metric embeddings

1. INTRODUCTION
The edit distance (or Levenshtein distance) between two

strings is the number of insertions, deletions, and substitu-
tions needed to transform one string into the other [17]. This
distance is of fundamental importance in several fields such
as computational biology and text processing/searching, and
consequently, problems involving edit distance were studied
extensively (cf. [21], [11], and references therein). In com-
putational biology, for instance, edit distance and its slight
variants are the most elementary measures of dissimilarity
for, say, genomic data, and thus improvements on edit dis-
tance algorithms have the potential of major impact.

The basic problem is to compute the edit distance between
two strings of length n over some alphabet. The text-book

∗Supported by a Symantec research fellowship, NSF grant
0728645, and NSF grant 0732334.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’09, May 31–June 2, 2009, Bethesda, Maryland, USA.
Copyright 2009 ACM 978-1-60558-506-2/09/05 ...$5.00.

dynamic programming runs in O(n2) time (cf. [8] and ref-
erences therein). This was only slightly improved by Masek
and Paterson [18] to O(n2/ log2 n) time for constant-size al-
phabets. Their result from 1980 remains the best algorithm
to this date.

Since near-quadratic time is too costly when working on
large datasets, practitioners tend to rely on faster heuristics
(cf. [11], [21]). This leads to the question of finding fast
algorithms with provable guarantees, specifically: can one
approximate the edit distance between two strings in near-
linear time [12, 3, 2, 4, 10, 9, 22, 14, 15]?

Prior results on approximate algorithms1. A
√
n-

approximation algorithm that runs in linear time immedi-
ately follows from the O(n + d2)-time exact algorithm of
Myers [20], where d is the edit distance between the input
strings. Subsequent research improved the approximation
first to O(n3/7), and then to O(n1/3+o(1)), due to, respec-
tively, Bar-Yossef, Jayram, Krauthgamer, and Kumar [2],
and Batu, Ergün, and Sahinalp [4].

A sublinear time algorithm was obtained by Batu, Ergün,
Kilian, Magen, Raskhodnikova, Rubinfeld, and Sami [3].
Their algorithm distinguishes the cases when the distance is
O(n1−ǫ) vs. Ω(n) in time2 Õ(n1−2ǫ +n(1−ǫ)/2) for any ǫ > 0.
Note that their algorithm cannot distinguish distances, say,
O(n0.1) vs. Ω(n0.9).

On a related front, in 2005, the breakthrough result of Os-
trovsky and Rabani gave an embedding of the edit distance

metric into ℓ1 with 2Õ(
√

log n) distortion [22]. This result
vastly improved related applications, namely nearest neigh-
bor search and sketching. However it did not have implica-
tions for the original problem of computing edit distance in
sub-quadratic time. In particular, to the best of our knowl-
edge it is not known whether it is possible to compute their
embedding in less than a quadratic time.

The best approximation to this date remains the 2006
result of Batu, Ergün, and Sahinalp [4], achieving n1/3+o(1)

approximation. Even for n2−ǫ time, their approximation is
nǫ/3+o(1).

Our result. We obtain approximation 2Õ(
√

log n) in near-
linear time. This is the first sub-polynomial approxima-
tion algorithm for computing the edit distance between two
strings running in strongly subquadratic time.

1We make no attempt at presenting a complete list of results
for restricted problems, such as average case edit distance,
weakly-repetitive strings, bounded distance regime, or re-
lated problems, such as pattern matching/nearest neighbor,
sketching. However, for a very thorough survey, if only
slightly outdated, see [21].
2We use Õ(f(n)) to denote f(n) · logO(1) f(n).

Theorem 1.1. We can compute the edit distance between

two strings x, y ∈ {0, 1}n up to a factor of 2Õ(
√

log n) in

n · 2Õ(
√

log n) time.

Our result immediately extends to a sublinear-time al-
gorithm as well. In this scenario, the goal is to compute
the distance between two strings x, y of the same length
n in o(n) time. For this problem, for any α < β ≤ 1,
we can distinguish distance O(nα) from distance Ω(nβ) in

O(nα+2(1−β)+o(1)) time. We describe this application in Ap-
pendix A.

Before describing our general approach and the techniques
used, we first introduce a few definitions. Readers familiar
with Earth-Mover Distance (EMD), product spaces (specif-
ically min-product spaces), tree/graph metrics, and the dif-
ference between oblivious and non-oblivious embeddings may
skip the next section.

1.1 Preliminaries and Notation
We write ed(x, y) to denote the edit distance between

strings x and y. We use the notation [n] = {1, 2, 3, . . . n}.
For a string x, a substring starting at i, of length m, is de-
noted x[i : i+m−1]. Whenever we say with high probability
(w.h.p.) throughout the paper, we mean “with probability
1 − 1/p(n)”, where p(n) is a sufficiently large polynomial
function of the input size.

Embeddings. For a metric (M,dM), and another metric
(X, ρ), an embedding φ : M → X has distortion γ ≥ 1
if, for any x, y ∈ M , we have dM (φ(x), φ(y)) ≤ ρ(x, y) ≤
γ · dM (φ(x), φ(y)).

Embedding φ is oblivious if it is randomized and, for any
subset S ⊂ M of size n, the distortion guarantee holds for
all pairs x, y ∈ S with high probability. The embedding φ is
non-oblivious if it holds for a specific set S (i.e., φ is allowed
to depend on S).

Metrics. We define thresholded Earth-Mover Distance,
denoted TEMDt for a fixed threshold t > 0, as the following
distance on subsets A and B of size s ∈ N of some metric
M = (M,dM):

TEMDt(A,B) = 1
s

min
τ :A→B

X

a∈A

min
˘

dM (a, τ (a)), t
¯

(1)

where τ ranges over all bijections between sets A and B.
TEMD∞ is the simple Earth-Mover Distance (EMD). We
will always use t = s and thus drop the subscript t; i.e.,
TEMD = TEMDs.

A graph (tree) metric is a metric induced by a connected
weighted graph (tree) G, where the distance between two
vertices is the length of the shortest path between them.
We denote by TM an arbitrary tree metric.

Semimetric spaces. We define a semimetric to be a pair
(M,dM) that satisfies all the properties of a metric space ex-
cept the triangle inequality. A γ-near metric is a semimetric
(M,dM) such that there exists some metric (M,d∗M) (satis-
fying the triangle inequality) with the property that, for any
x, y ∈M , we have that d∗M (x, y) ≤ dM (x, y) ≤ γ · d∗M (x, y).

Product spaces. A sum-product over a metric M =
(M,dM), denoted

Lk
ℓ1

M, is a derived metric over the set

Mk, where the distance between two points x = (x1, . . . xk)
and y = (y1, . . . yk) is equal to

d1,M (x, y) =
X

i∈[k]

dM (xi, yi).

Analogously, a min-product over M = (M,dM), denoted
Lk

min M, is a semimetric over Mk, where the distance be-
tween two points x = (x1, . . . xk) and y = (y1, . . . yk) is

dmin,M (x, y) = min
i∈[k]

˘

dM (xi, yi)
¯

.

We also slightly abuse the notation by writing
Lk

min TM
to denote the min-product of k tree metrics (that could differ
from each other).

1.2 Techniques
Our starting point is the Ostrovsky-Rabani embedding.

For strings x, y, as well as for all substrings σ of specific
lengths, we compute vectors vσ in low-dimensional ℓ1, such
that the distance between two such vectors approximates
the edit distance between the associated (sub-)strings. In
this respect, these vectors can be seen as an embedding
of the considered strings into ℓ1 of polylogarithmic dimen-
sion. Unlike the Ostrovsky-Rabani embedding, however, our
embedding is non-oblivious, in the sense that the vectors
vσ are computed given all the relevant strings σ. In con-
trast, Ostrovsky and Rabani give an oblivious embedding
φn : {0, 1}n → ℓ1 such that ‖φn(x) − φn(y)‖1 approximates
ed(x, y). However, the obliviousness comes at a high price:
their embedding requires a high dimension, of order Ω(n),
and a high computation time, of order Ω(n2) (even when
allowing randomized embedding, and a high probability of a
correct answer). We further note that reducing the dimen-
sion of this embedding seems unlikely as suggested by the
results on impossibility of dimensionality reduction within
ℓ1 [7, 6, 16]. Nevertheless, perhaps not surprisingly, we reuse
the general recursive approach of the Ostrovsky-Rabani em-
bedding.

The heart of our algorithm is a near-linear time algorithm
that, given a sequence of low-dimensional vectors v1, . . . vn ∈
ℓ1, and an integer s < n, constructs new vectors q1, . . . qm ∈
ℓ
O(log2 n)
1 , where m = n − s + 1, with the following prop-

erty. For all i, j ∈ [m], the value ‖qi − qj‖1 approximates
the Earth-Mover Distance (EMD)3 between the sets Ai =
{vi, vi+1, . . . vi+s−1} and Aj = {vj , vj+1, . . . vj+s−1}. To
accomplish this (non-oblivious) embedding, we proceed in
two stages. First, we embed (obliviously) the EMD dis-
tance into a min-product of ℓ1’s of low dimension. In other
words, for a set A, we associate a matrix L(A) such that the
EMD distance between sets A and B is approximated by
minr

P

t |L(A)rt−L(B)rt|. Min-products help us simultane-
ously on two fronts: one is that we can apply a weak dimen-
sionality reduction in ℓ1, using the Cauchy projections, and
the second one enables us to accomplish a low-dimensional
EMD embedding itself (the latter reason turns out to be
the most important). Our embedding L(·) is not only low-
dimensional, but it is also linear, allowing us to compute
vectors L(Ai) in near-linear time by performing one pass
over the sequence v1, . . . vn. Linearity is crucial here as even
the total size of Ai’s is

P

i |Ai| = (n− s+ 1) · s, which can

be as high as Ω(n2), and so processing each Ai separately is
infeasible.

In the second stage, we show how to embed a set of n
points lying in a low-dimensional min-product of ℓ1’s back
into a low-dimensional ℓ1 with only a small distortion. We
note that this is not possible in general, with any distortion,

3In fact, our algorithm does this for thresholded EMD,
TEMD, but the technique is precisely the same.

as our points do not even form a metric. We show that this
is possible when we assume that the semi-metric induced
by the set of points actually approximates some metric (in
our case, the min-product approximates some EMD metric).
The embedding from this stage starts by embedding a min-
product of ℓ1’s into a low-dimensional min-product of tree
metrics. We further embed the latter into a n-point met-
ric supported by a shortest-path metric of a sparse graph.
Finally, we observe that we can implement Bourgain’s em-
bedding on a sparse graph metric in near-linear time. These
last two steps make our embedding non-oblivious.

2. SHORT OVERVIEW OF THE
OSTROVSKY-RABANI EMBEDDING

We now briefly describe the embedding of Ostrovsky and
Rabani [22]. Some notions introduced here are used in the
next section.

The embedding of Ostrovsky and Rabani is recursive. For
a fixedm, they construct the embedding of edit distance over
strings of lengthm using the embedding of edit distance over

strings of shorter length l ≤ m/2
√

log m. It is readily seen
that the number of recursion levels is O(

√
logm log logm).

We denote their embedding of length-m strings by φm :
{0, 1}m → ℓ1, and let dOR

m be the resulting distance:
dOR

m (x, y) = ‖φm(x) − φm(y)‖1. For two strings x, y ∈
{0, 1}m, the embedding is such that dOR

m = ‖φm(x)−φm(y)‖1

approximates an “idealized” distance d∗m(x, y), which itself
approximates the edit distance between x and y.

Before describing the “idealized” distance d∗m, we intro-

duce some notation. Partition x into b = 2
√

log m blocks
called x(1), . . . x(b) of length l = m/b. Next, fix j ∈ [b] and

s ≤ l. Consider the set of all substrings of x(j) of length
l − s+ 1, embed each recursively, and let Ss

j (x) ⊂ ℓ1 be the
set of resulting vectors (note that |Ss

i | = s). Formally,

Ss
j (x) =

˘

φl−s+1(x[(j−1)l+z : (j−1)l+z+l−s]) | z ∈ [s]
¯

.

Taking φl−s+1 as given (and thus also the sets Ss
j (x) for all

x), define the new“idealized”distance d∗m approximating the
edit distance between strings x, y ∈ {0, 1}m as

d∗m(x, y) =
b

X

j=1

X

f∈N

s=2f≤l

TEMD(Ss
j (x), Ss

j (y)) (2)

where TEMD is the thresholded Earth-Mover Distance de-
fined in Eqn. (1). Using the terminology from the prelimi-
naries, the distance function d∗m can be viewed as the dis-
tance function of the sum-product of TEMDs, i.e.,
Lb

ℓ1

LO(log m)
ℓ1

TEMD, and the embedding into this prod-

uct space is attained by the natural identity map (using sets
Ss

j).
The key idea behind this distance d∗m is that, as Ostrovsky

and Rabani essentially show, as long as one can approximate
d∗m at each step up to a factor of logO(1)m, the final distor-

tion is at most 2Õ(
√

log m). Specifically, suppose that at each
step one approximates d∗m up to distortion α ≥ 2. Then,
if we denote by τ (m) the distortion for strings of length up
to m, the analysis of Ostrovsky and Rabani proves that the
distortion satisfies the recurrence

τ (m) ≤ (α logm)O(1) ·
“

τ
“

m/2
√

log m
”

+ 2
√

log m
”

. (3)

Thus, to complete a step of the recursion, it is sufficient

to embed the metric
Lb

ℓ1

LO(log m)
ℓ1

TEMD into ℓ1 with a

small distortion α. Indeed, Ostrovsky and Rabani show
how to embed a relaxed version of TEMD into ℓ1 with
α = O(log n) distortion, yielding the desired embedding,
which approximates d∗m up to α = O(logm) distortion at
each level. Plugging α = O(logm) in Eqn. (3), they obtain

τ (m) = 2Õ(
√

log m). The required dimension is Õ(m).

3. PROOF OF MAIN THEOREM
We now describe our general approach. Fix x ∈ {0, 1}n.

For each substring σ of x we construct a low-dimensional
vector vσ such that, for any substrings σ, τ of the same
length, the edit distance between σ and τ is approximated
by the ℓ1 distance between the vectors vσ and vτ . We note
that the embedding is non-oblivious: to construct vectors
vσ’s we need to know all the substrings of x in advance
(akin to Bourgain’s embedding guarantee). We also note
that computing such vectors is enough to solve the problem
of approximating the edit distance between two strings, x
and y. Specifically, we apply this procedure to the string
x′ = x ◦ y, the concatenation of x and y, and then compute
the ℓ1 distance between the vectors corresponding to x and
y, substrings of x′.

More precisely, for each length m ∈ W , for some set
W ⊂ [n] specified later, and for each substring x[i : i+m−1],

where i = 1, . . . n−m+ 1, we compute a vector v
(m)
i ∈ R

k,
where k = O(log2 n). The construction is inductive: to

compute vectors v
(m)
i , we use vectors v

(l)
i for l ≪ m and

l ∈ W . The general approach of our construction is based
on the analysis of the recursive step of Ostrovsky and Ra-

bani. In particular, our vectors v
(m)
i ∈ ℓ1 will also approx-

imate the d∗m distance, defined in Eqn. (2) (with redefined
sets Ss

i). The main new challenge is to process one level

(vectors v
(m)
i for a fixed m) in near-linear time. Besides the

computation time itself, a fundamental difficulty in applying
the approach of Ostrovsky and Rabani directly is that their
embedding would give a much higher dimension k, propor-
tional to Õ(m). Thus, if we were to use their embedding,
even storing all the vectors would take quadratic space.

To overcome this last difficulty, we settle on embedding
non-obliviously the set of substrings x[i : i + m − 1] for

i ∈ [n−m+ 1] under the “ideal” distance d∗m with logO(1) n
distortion (formally, under the distance d∗m from Eqn. (2),

when Ss
j (x[i : i+m− 1]) = {v(l−s+1)

i+(j−1)l+z−1 | z ∈ [s]} for l =

m/2
√

log n). Existentially, we know that there exist vectors

v
(m)
i ∈ R

k, for k = O(log2 n), such that ‖v(m)
i − v

(m)
j ‖1

approximate d∗m(x[i : i + m − 1], x[j : j + m − 1]) for all
i, j, by Bourgain’s embedding [5]. We show that we can also

compute these v
(m)
i ’s efficiently for all i ∈ [n−m+ 1].

The main building block is the following theorem. It
shows how to approximate the TEMD distance for the de-
sired sets Ss

j .

Theorem 3.1. Fix n,M ∈ N and s ∈ [n]. Suppose we
have n vectors v1, . . . vn in {−M, . . .M}α for α = O(log2 n).
Define sets Ai = {vi, vi+1, . . . vi+s−1}, for i = 1, . . . n−s+1.

Let k = O(log2 n). We can compute (randomized) vectors
qi ∈ ℓk1 for i ∈ [n− s+ 1] such that for any i, j ∈ [n− s+1],
w.h.p., we have

TEMD(Ai, Aj) ≤ ‖qi − qj‖1 ≤ TEMD(Ai, Aj) · logO(1) n.

Furthermore, computing all vectors qi takes Õ(n) time.

To map the statement of this theorem to the above de-
scription, we mention that, for each l from a specific set of in-

tegers, we apply the theorem to vectors
“

v
(l−s+1)
i

”

i∈[n−l+s]

for each s = 1, 2, 4, . . . l.
We prove Theorem 3.1 in the subsequent sections. For

now, we show how it implies the main theorem, Theorem 1.1.

Proof of Theorem 1.1. We start by concatenating y
to the end of x; we will work with the new version of x only.

Let k = O(log2 n) and b = 2
√

log n. We construct vectors

v
(m)
i ∈ R

k for m ∈ W , where W ⊂ [n] is a carefully chosen

set of size 2Õ(
√

log n). Namely, W is a minimal set such that:
n ∈ W , and, for each i ∈ W with i ≥ b, we have that
i/b − 2j + 1 ∈ W for all integers j ≤ ⌊log i/b⌋. It is easy to

show by induction that the size of W is 2O(
√

log n log log n).

For each m ∈ W such that m ≤ 22
√

log n, we set v
(m)
i to

be equal to hm(x[i : i + m − 1]), where hm : {0, 1}m →
{0, 1}k is a randomly chosen function. It is readily seen

that ‖v(m)
i − v

(m)
j ‖1 is a 22

√
log n approximation to ed(x[i :

i+m− 1], x[j : j +m− 1]) for each i, j ∈ [n−m+ 1].

For m ∈ W such that m > 22
√

log n, we proceed as fol-
lows. Let l = m/b. First we construct vectors approximat-

ing TEMD on sets Am,s
i = {v(l−s+1)

i+z | z = 0, . . . s − 1},
where s = 1, 2, 4, 8, . . . l and i ∈ [n − l + s]. In particu-
lar, for fixed s ∈ [l] equal to a power of 2, we apply The-

orem 3.1 to the set of vectors
“

v
(l−s+1)
i

”

i∈[n−l+s]
obtain-

ing vectors
“

q
(m,s)
i

”

i∈[n−l+1]
. Theorem 3.1 guarantees that,

for each i, j ∈ [n − l + 1], the value ‖q(m,s)
i − q

(m,s)
j ‖1 ap-

proximates TEMD(Am,s
i , Am,s

j) up to a factor of logO(1) n.

We can then use these vectors q
(m,s)
i to obtain the vectors

ṽ
(m)
i ∈ R

2O(
√

log n)

that approximate the “idealized” distance
d∗m for substrings x[i : i+m− 1], for i ∈ [n−m+1]. Specif-
ically, we let the vector ṽm

i be a concatenation of vectors

q
(m,s)

i+(j−1)l over all values of s, powers of 2 less than l, and

j ∈ [b]:

ṽ
(m)
i =

“

q
(m,s)

i+(j−1)l

”

j∈[b]

s=2f≤l,f∈N

.

Then, the vectors ṽ
(m)
i approximate the distance d∗m, as de-

fined in Eqn. (2), with the sets Ss
j (x[i : i + m − 1]), for

i ∈ [n−m+ 1] and j ∈ [b], taken as

Ss
j (x[i : i+m− 1]) = Am,s

i+(j−1)l

=
n

v
(l−s+1)

i+(j−1)l+z
| z = 0, . . . s− 1

o

.

The vectors ṽ
(m)
i already satisfy our property: ‖ṽ(m)

i −
ṽ
(m)
j ‖1 approximates the edit distance between x[i : i+m−1]

and x[j : j+m−1] for all i, j ∈ [n−m+1]. The only reason

we are not done is that ṽ
(m)
i have dimension b logO(1) n =

2O(
√

log n). Although it would be fine even if we just used

ṽ
(m)
i recursively (and this would not change bounds, up to

constants in O(·)), we can still reduce the dimension further
down to O(log2 n) by using lemmas we develop later, namely
Lemmas 3.3, 3.4, 3.6.

The algorithm finishes by outputting ‖v(n)
1 −v(n)

n+1‖, which
is an approximation to the edit distance between x[1 : n] and

x[n + 1 : 2n] = y. The approximation factor of 2Õ(
√

log n)

follows from Eqn. (3) for α = logO(1) n. The total running

time is O(|W | · n · b · logO(1) n) = n · 2Õ(
√

log n).

3.1 Proof of Theorem 3.1
The proof proceeds in two stages. In the first stage we

show an embedding of TEMD into a low-dimensional space.
Specifically, we show an (oblivious) embedding of TEMD
into a min-product of ℓ1’s. Recall that min-product of ℓ1, de-
noted

Ll
min ℓ

k
1 , is a semi-metric where the distance between

two l-by-k vectors x, y ∈ R
l×k is dmin,1(x, y) = mini∈[l]

{P

j∈[k] |xi,j − yi,j |}. Our min-product of ℓ1’s has dimen-

sions l = O(log n) and k = O(log2 n). The min-product can
be seen as emerging from two separate sources: one from the
embedding of TEMD into ℓ1 (of initially high-dimension),
and another from a weak dimensionality reduction in ℓ1, us-
ing Cauchy projections. Furthermore, our embedding, de-
noted λ, is linear in the sets A: λ(A) =

P

a∈A λ({a}). The
linearity allows us to compute the embedding of sets Ai in a
streaming fashion: the embedding of Ai+1 is obtained from
the embedding of Ai with logO(1) n additional processing.
This stage appears in Section 3.1.1.

In the second stage, we show that, given a set of n points
in min-product of ℓ1’s, we can embed these points into low-
dimensional ℓ1 with O(log n) distortion. The time required
is near-linear in n and the dimensions of the min-product of
ℓ1’s. To accomplish this step, we embed the min-product of
ℓ1’s into a min-product of tree metrics.

Next, we show that n points in the low-dimensional min-
product of tree metrics can be embedded into a graph metric
supported by a sparse graph. We note that this is in general
not possible, with any (even non-constant) distortion. We
show that this is possible when we assume that our subset
of the min-product of tree metrics approximates some ac-
tual metric (in our case, the min-product approximates the
TEMD metric). Finally, we observe that we can implement
Bourgain’s embedding in near-linear time on a sparse graph
metric. This stage appears in Section 3.1.2.

We conclude with the proof of Theorem 3.1 in Section 3.1.3.

3.1.1 Embedding EMD into min-product over ℓ1
In the next lemma, we show how to embed TEMD into a

min-product of ℓ1’s of low dimension. Moreover, when the
sets Ai are obtained from a sequence of vectors v1, . . . vn, by
taking Ai = {vi, . . . vi+s}, we can compute the embedding
in near-linear time.

Lemma 3.2. Fix n,M ∈ N and s ∈ [n]. Suppose we have
n vectors v1, . . . vn in {−M, . . .M}α for α = O(log n). Con-
sider the sets Ai = {vi, vi+1, . . . vi+s−1}, for i ∈ [n− s+ 1].

Let k = O(log3 n). We can compute (randomized) vectors
qi ∈ ℓk1 for i ∈ [n− s+ 1] such that for any i, j ∈ [n− s+1],
we have that

Pr
h

‖qi − qj‖1 ≤ TEMD(Ai, Aj) · O(log2 n)
i

≥ 0.1

and ‖qi − qj‖1 ≥ TEMD(Ai, Aj) w.h.p. The computation

takes Õ(n) time.
Thus, we can embed the TEMD metric over sets Ai into

Ll
min ℓ

k
1 , for l = O(log n), such that the distortion is O(log2 n)

w.h.p. The computation time is Õ(n).

Proof. First we show how to embed TEMD metric over
the sets Ai into ℓ1 of dimension h = Õ(Mα). For this pur-
pose, we use a slight modification of the embedding of [1] (it

can also be seen as a strengthening of the TEMD embedding
of Ostrovsky and Rabani).

The embedding of [1] constructs m = O(log s) embed-

dings ψi, each of dimension h = Õ(Mα), and then the final
embedding is just the concatenation ψ = ψ1 ◦ ψ2 . . . ◦ ψm.
For i = 1, . . .m, we impose a randomly shifted grid of side-
length Ri = 2i−2. Then ψi has a coordinate for each cell
and the value of that coordinate, for a set A, is equal to the
number of points from A falling into the corresponding cell.
Now, if we scale ψ up by Θ(logn), Theorem 3.1 from [1]
says that the vectors q′i = ψ(Ai) satisfy the condition that,
for any i, j ∈ [n − s + 1], we have: 1) E

ˆ

‖q′i − q′j‖1

˜

≤
TEMD(Ai, Aj)·O(log2 n) and 2) ‖q′i−q′j‖1 ≥ TEMD(Ai, Aj)
w.h.p. Thus, the vectors q′i satisfy the promised properties
except they have a high dimension.

To reduce the dimension of q′i’s, we apply a weak ℓ1 di-
mensionality reduction via 1-stable (Cauchy) projections.
Namely, we pick a random matrix P of size k = O(log3 n)
by mh, the dimension of ψ, where each entry is distributed
according to a Cauchy distribution, which has probability
distribution function f(x) = 1

π
· 1

1+x2 . Now define qi =

P · q′i ∈ ℓk1 . Standard properties of ℓ1 dimensionality re-
duction guarantee that the vectors qi satisfy the proper-
ties promised in the lemma statement, after an appropriate
rescaling (cf. Theorem 5 of [13] with ǫ = 1/2, γ = 1/6, and

δ = n−O(1)).
It remains to show that we can compute the vectors qi in

Õ(n) time. For this, we note that the resulting embedding
P ·ψ(A) is linear, namely P ·ψ(A) =

P

a∈A P ·ψ({a}). Thus,
we can use the idea of a sliding window over the stream
v1, . . . vn to compute qi = P · ψ(Ai) iteratively. Specifically,
note that

qi+1 = P · ψ(Ai+1) = P · ψ(Ai ∪ {vi+s} \ {vi})
= qi + P · ψ({vi+s}) − P · ψ({vi}).

Since we can compute P · ψ({vi}), for any i, in logO(1) n
time, we conclude that the total time to compute qi’s is
O(n · logO(1) n).

Finally, we show how we obtain an efficient embedding of
TEMD into min-product of ℓ1’s.

We apply the above procedure l = O(log n) times. Let

q
(z)
i be the resulting vectors, for i ∈ [n − s + 1] and z ∈

[l]. The embedding of a set Ai is the concatenation of the

vectors q
(z)
i , namely Qi = (q

(1)
i , q

(2)
i , . . . q

(l)
i) ∈ Ll

min ℓ
k
1 . The

Chernoff bound implies that w.h.p., for any i, j ∈ [n−s+1],
we have that

dmin,1(Qi, Qj) = min
z∈[l]

‖qz
i −qz

j ‖ ≤ TEMDs(Ai, Aj)·O(log2 n).

Also, dmin,1(Qi, Qj) ≥ TEMDs(Ai, Aj) trivially. Thus the
vectors Qi are an embedding of the TEMD metric on Ai’s
into

Ll
min ℓ

k
1 with distortion O(log2 n) w.h.p.

3.1.2 Embedding of min-product over ℓ1 into low-
dimensional ℓ1

In this section, we show how, given n points Q1, . . . Qn

in the semi-metric space
Ll

min ℓ1, we can embed them into

ℓ1 of dimension O(log2 n) with distortion logO(1) n. This
embedding works under the assumption that the semi-metric
on Q1, . . . Qn is a logO(1) n approximation of some metric.
We start by showing that we can embed a min-product of
ℓ1’s into a min-product of tree metrics.

Lemma 3.3. Fix n,M ∈ N such that M = nO(1). Con-
sider n vectors v1, . . . vn in

Ll
min ℓ

k
1 , where each coordinate

of each vi lies in the interval {−M, . . . ,M}. We can embed
these vectors into a min-product of O(l log2 n) tree metrics,

i.e.,
LO(l log2 n)

min TM, incurring distortion O(log n) w.h.p.

The computation time is Õ(kln).

Proof. We consider all thresholds 2t, for t ∈ {0, 1, . . . ,
logM}. For each threshold 2t, and for each coordinate of
the min-product (i.e., ℓk1), we create O(log n) tree metrics.
Each tree metric is independently created as follows. We
again use randomly shifted grids. Specifically, we define a
hash function h : ℓk1 → Z

k as

h(x1, . . . , xk) =
“jx1 + u1

2t

k

,
jx2 + u2

2t

k

, . . . ,
jxk + uk

2t

k”

,

where each ut is chosen at random from [0, 2t). We cre-
ate each tree metric so that the nodes corresponding to the
points hashed by f to the same value are at distance 2t

(this creates a set of stars), and each pair of points that are
hashed to different values are at distance 2M (we connect
the roots of the stars). It is easy to prove that for two points
x, y ∈ ℓk1 , the following holds

1 − ‖x− y‖1

2t
≤ Pr

h
[h(x) = h(y)] ≤ e−‖x−y‖1/2t

.

By the Chernoff bound, if x, y ∈ ℓk1 are at distance at most
2t, they will be at distance at most 2t in one of the tree
metrics that we have created w.h.p. This proves that our
embedding is unlikely to expand by more than a constant
factor.

On the other hand, let vi and vj be two input vectors at
distance greater than 2t. The probability that they are at
distance smaller than 2t/c log n in any of the O(l log2 n) tree
metrics, is at most n−c+1 for any c > 0, by union bound.

We now show that we can embed a subset of the min-
product of tree metrics into a graph metric, assuming the
subset is close to a metric.

Lemma 3.4. Consider a semi-metric M = (X, ξ) of size

n in
Ll

min TM for some l ∈ N, where each tree metric in
the product is of size O(n). Suppose M is a γ-near metric
(i.e., it is equal to a metric up to a factor γ). Then we can
embed M in a connected weighted graph with O(nl) edges
with distortion γ in O(nl) time.

Proof. We consider l separate trees each on O(n) nodes,
corresponding to each of l dimensions of the min-product.
We identify the nodes of trees that correspond to the same
point in the min-product. The graph we obtain has at
most O(nl) edges. Denote the shortest-path metric it spans
by M′ = (V, ρ), and denote our embedding by φ : X →
V . Clearly, for each pair u, v of points in M , we have
ρ(φ(u), φ(v)) ≤ ξ(u, v). If the distance between two points
shrinks after embedding, there is a sequence of points w0 =
u, w1, . . . , wk−1, wk = v such that ρ(φ(u), φ(v)) = ξ(w0, w1)
+ξ(w1, w2)+ · · ·+ξ(wk−1, wk). Because M is a γ-near met-
ric, there exists a metric ξ⋆ : X × X → [0,∞), such that
ξ⋆(x, y) ≤ ξ(x, y) ≤ γ · ξ⋆(x, y), for all x, y ∈ X. Therefore,

ρ(φ(u), φ(v)) =

k−1
X

i=0

ξ(wi, wi+1) ≥
k−1
X

i=0

ξ⋆(wi, wi+1)

≥ ξ⋆(w0, wk) = ξ⋆(u, v) ≥ ξ(u, v)/γ.

Hence, the distortion is bounded by γ.

We now show how to embed the shortest-path metric of
a graph into a low dimensional ℓ1-space in time near-linear
in the graph size. For this purpose, we implement Bour-
gain’s embedding [5] in near-linear time. We use the follow-
ing version of Bourgain’s embedding, which follows from the
analysis in [19].

Lemma 3.5 (Bourgain’s embedding [19]). Let M =
(X, ρ) be a finite metric on n points. There is an algorithm
that computes an embedding f : X → ℓk1 of M into ℓk1 for
k = O(log2 n) such that, with high probability, for each u, v ∈
X, we have ρ(u, v) ≤ ‖f(u) − f(v)‖1 ≤ ρ(u, v) · O(log n).

Specifically, for coordinate i ∈ [k] of f , the embedding as-
sociates a nonempty set Ai ⊆ X such that f(u)i = ρ(u,Ai) =
mina∈A ρ(u, a). Each Ai is samplable in linear time.

Lemma 3.6. Consider a connected graph G = (V,E) on
n nodes with m edges and a weight function w : E →
(0,∞). There is a randomized algorithm that embeds G into

ℓ
O(log2 n)
1 with distortion O(log n) w.h.p., in time Õ(m).

Proof. Let ψ : V → ℓ
O(log2 n)
1 be the embedding given by

Lemma 3.5. We note that, for any nonempty subset A ⊆ V ,
we can compute ρ(v,A) for all v ∈ V by Dijkstra’s algorithm

in Õ(m) time. The total running time is thus Õ(m).

3.1.3 Finalization of the proof of Theorem 3.1
The proof of Theorem 3.1 results from applying the Lem-

mas 3.2, 3.3, 3.4, and 3.6 in order.
In some cases to properly apply a lemma, we need to as-

sume that all our coordinates are integers. Since the number
of dimensions is always at most polylogarithmic, this can be
done by multiplying each coordinate by the same polyloga-
rithmic factor and rounding to the nearest integer.

Acknowledgment
The authors thank Piotr Indyk for helpful discussions, and
Robert Krauthgamer, Sofya Raskhodnikova, Ronitt Rubin-
feld, and Rahul Sami for early discussions on near-linear
algorithms for edit distance.

4. REFERENCES
[1] A. Andoni, P. Indyk, and R. Krauthgamer. Earth mover

distance over high-dimensional spaces. In Proc. of SODA,
pages 343–352, 2008.

[2] Z. Bar-Yossef, T. S. Jayram, R. Krauthgamer, and
R. Kumar. Approximating edit distance efficiently. In Proc.
of FOCS, pages 550–559, 2004.

[3] T. Batu, F. Ergün, J. Kilian, A. Magen, S. Raskhodnikova,
R. Rubinfeld, and R. Sami. A sublinear algorithm for
weakly approximating edit distance. In Proc. of STOC,
pages 316–324, 2003.

[4] T. Batu, F. Ergün, and C. Sahinalp. Oblivious string
embeddings and edit distance approximations. In Proc. of
SODA, pages 792–801, 2006.

[5] J. Bourgain. On Lipschitz embedding of finite metric
spaces into Hilbert space. Israel Journal of Mathematics,
52:46–52, 1985.

[6] B. Brinkman and M. Charikar. On the impossibility of
dimension reduction in ℓ1. In Proc. of FOCS, 2003.

[7] M. Charikar and A. Sahai. Dimension reduction in the ℓ1

norm. In Proc. of FOCS, pages 551–560, 2002.
[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms. MIT Press, 2nd edition, 2001.
[9] G. Cormode. Sequence Distance Embeddings. Ph.D. Thesis.

University of Warwick, 2003.

[10] G. Cormode, M. Paterson, S. C. Sahinalp, and U. Vishkin.
Communication complexity of document exchange. In
Proc. of SODA, pages 197–206, 2000.

[11] D. Gusfield. Algorithms on strings, trees, and sequences.
Cambridge University Press, Cambridge, 1997.

[12] P. Indyk. Algorithmic aspects of geometric embeddings
(tutorial). Proc. of FOCS, pages 10–33, 2001.

[13] P. Indyk. Stable distributions, pseudorandom generators,
embeddings and data stream computation. J. ACM,
53(3):307–323, 2006. Previously appeared in FOCS’00.

[14] S. Khot and A. Naor. Nonembeddability theorems via
fourier analysis. Math. Ann., 334(4):821–852, 2006.
Preliminary version appeared in FOCS’05.

[15] R. Krauthgamer and Y. Rabani. Improved lower bounds
for embeddings into l1. In Proc. of SODA, pages
1010–1017, 2006.

[16] J. Lee and A. Naor. Embedding the diamond graph in Lp

and dimension reduction in L1. Geometric and Functional
Analysis (GAFA), 14(4):745–747, 2004.

[17] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals (in russian). Doklady
Akademii Nauk SSSR, 4(163):845–848, 1965. Appeared in
English as: V. I. Levenshtein, Binary codes capable of
correcting deletions, insertions, and reversals. Soviet
Physics Doklady 10(8), 707–710, 1966.

[18] W. J. Masek and M. Paterson. A faster algorithm
computing string edit distances. J. Comput. Syst. Sci.,
20(1):18–31, 1980.

[19] J. Matousek. Lectures on Discrete Geometry. Springer,
2002.

[20] E. W. Myers. An O(ND) difference algorithm and its
variations. Algorithmica, 1(2):251–266, 1986.

[21] G. Navarro. A guided tour to approximate string matching.
ACM Comput. Surv., 33(1):31–88, 2001.

[22] R. Ostrovsky and Y. Rabani. Low distortion embedding for
edit distance. J. ACM, 54(5), 2007. Preliminary version
appeared in STOC’05.

A. A SUBLINEAR TIME ALGORITHM
Theorem A.1. Let α and β be two constants such that

0 ≤ α < β ≤ 1. There is an algorithm that distinguishes
pairs of strings with edit distance O(nα) from those with

distance Ω(nβ) in time nα+2(1−β)+o(1).

Proof. Let f(n) = 2Õ(
√

log n) be a non-decreasing func-
tion that bounds the approximation factor of the algorithm

given by Theorem 1.1. Let b = nβ−α

f(n)·log n
. We partition the

input strings x and y into b blocks, denoted xi and yi for
i ∈ [b], of length n/b each.

If ed(x, y) = O(nα), then maxi ed(xi, yi) ≤ ed(x, y) =
O(nα). On the other hand, if ed(x, y) = Ω(nβ), then maxi

ed(xi, yi) ≥ ed(x, y)/b = Ω(nα · f(n) · log n). Moreover,
the number of blocks i such that ed(xi, yi) ≥ ed(x, y)/2b =
Ω(nα · f(n) · log n) is at least

ed(x, y) − b · ed(x, y)/2b

n/b
= Ω(nβ−1 · b).

Therefore, we can tell the two cases apart with constant
probability by sampling O(n1−β) pairs of blocks (xi, yi) and
checking if any of the pairs is at distance Ω(nα ·f(n) · log n).
Since for each such pair of strings, we only have to tell edit
distance O(nα) from Ω(nα · f(n) · log n), we can use the
algorithm of Theorem 1.1. We amplify the probability of
success of that algorithm in the standard way by running it
O(log n) times. The total running time of the algorithm is

O(n1−β) ·O(log n) · (n/b)1+o(1) = O(nα+2(1−β)+o(1)).

