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Abstract—We introduce a new tool for approximation and
testing algorithms calledpartitioning oracles. We develop methods
for constructing them for any class of bounded-degree graphs with
an excluded minor, and in general, for any hyperfinite class of
bounded-degree graphs. These oracles utilize onlylocal compu-
tation to consistently answer queries about aglobal partition that
breaks the graph into small connected components by removing
only a small fraction of the edges.

We illustrate the power of this technique by using it to extend
and simplify a number of previous approximation and testing
results for sparse graphs, as well as to provide new results that
were unachievable with existing techniques. For instance:

• We give constant-time approximation algorithms for the size
of the minimum vertex cover, the minimum dominating set,
and the maximum independent set for any class of graphs
with an excluded minor.

• We show a simple proof that any minor-closed graph property
is testable in constant time in the bounded degree model.

• We prove that it is possible to approximate the distance
to almost any hereditary property in any bounded degree
hereditary families of graphs. Hereditary properties of interest
include bipartiteness,k-colorability, and perfectness.

1. INTRODUCTION

Solving combinatorial graph problems (such as minimum
vertex cover, maximum independent set, minimum domi-
nating set) has been one of the main research goals of
theoretical computer science. In the early 1970s, many of
those problems unfortunately turned out to be as hard as the
satisfiability problem, due to the breakthrough result of Karp
([12], see the survey [10]). In the 1990s, the discovery of
the PCP theorem resulted in showing that even finding good
approximate solutions is often NP-hard (see for instance
[23]).

In spite of these negative results, multiple methods for
finding good approximate solutions for several restricted
classes of graphs have been developed over the years.
Notably, Lipton and Tarjan [14] proved the separator the-
orem for planar graphs, which resulted in polynomial-time
approximation schemes for several combinatorial problems,
which remain NP-hard even restricted to planar graphs [15].
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The separator theorem was generalized to arbitrary graphs
with an excluded minor by Alon, Seymour, and Thomas [1],
and similar polynomial-time approximation schemes imme-
diately followed.

An important implication of the separator theorem is that
any graph with a fixed excluded minor with maximum
degree bounded byd can be partitioned into small com-
ponents of size at mostpoly(d, 1/ε) by removing only an
ε-fraction of edges. In this paper, we develop techniques
for locally computing such a partition. We construct a
partitioning oracle that given query access to a minor-free
graph, provides query access to a fixed partition, and uses an
amount of computation that is independent of the graph size.
Just like knowing the entire partition is useful for finding
a good approximate solution, our local version is useful
for approximating the size of the optimal solution in time
independent of the actual graph size. Our partitioning oracles
also find applications to other testing and approximation
problems that we describe in more detail below.

Graph classes:We construct partitioning oracles for
hyperfinite classes of graphs with bounded degree. Infor-
mally, hyperfinite graphs are those that can be partitioned
into constant-size components by removing a small fraction
of edges. A formal definitions follows.

Definition 1:
• Let G = (V, E) be a graph.G is (ε, k)-hyperfiniteif

it is possible to removeε|V | edges of the graph such
that the remaining graph has connected components of
size at mostk.

• Let ρ be a function fromR+ to R+. A graphG is ρ-
hyperfiniteif for every ε > 0, G is (ε, ρ(ε))-hyperfinite.

• Let C be a class of graphs.C is ρ-hyperfiniteif every
graph inC is ρ-hyperfinite.

Examples of bounded-degree hyperfinite classes of graphs
include bounded-degree graphs with an excluded minor [1]
(for instance, bounded-degree planar graphs, bounded-
degree graphs with constant tree-width), bounded-degree
graphs of subexponential growth [7], and the class of non-
expanding bounded-degree graphs considered by Czumaj,
Shapira, and Sohler [6].

Elek [8] gives results similar to ours for bounded degree-
graphs of subexponential growth. Note that bounded-degree
graphs with an excluded minor often do not have bounded
growth. For instance, consider full binary trees, which are



an example of many popular minor-free classes of graphs.
They do not haveK3 as a minor; yet the number of vertices
around each vertex grows exponentially fast.

Constant-time approximation algorithms:We say that
an algorithm is an(α, β)-approximation algorithmfor a
value V (x) if on input x, it outputs V ′(x) such that
V (x) ≤ V ′(x) ≤ α · V (x) + β with probability at least
2/3. Moreover, for a given graph problem, we say that an
(α, εn)-approximation algorithm runs inconstant timeif its
running time is bounded by a function ofε and the average
degreed̃ (which we assume to be known to the algorithm).

The line of research on constant-time approximation
algorithms for graph problems was initiated by Par-
nas and Ron [18], who showed a constant-time(2, εn)-
approximation algorithm for minimum vertex cover1,
and a constant-time(O(log d), εn)-approximation algorithm
for minimum dominating set. Later, Nguyen and Onak
[17] showed a constant-time(1, εn)-approximation algo-
rithm for maximum matching. Alon2 showed a constant-
time (O(d log log d/ log d), εn)-approximation algorithm for
maximum independent set. The running times of some of
the above algorithms were improved by Marko and Ron
[16], and by Yoshida, Yamamoto, and Ito [22]. On the
negative side, Trevisan [18] showed that for anyδ > 0,
a (2 − δ, εn)-approximation algorithm for vertex cover
has to makeΩ(

√
n) queries to the graph. Alon showed

that there is no constant-time(o(log d), εn)-approximation
algorithm for minimum dominating set, and no constant-time
(o(d/log d), εn)-approximation algorithm for maximum in-
dependent set.

Elek [8] proved the existence of constant-time(1, εn)-
approximation algorithms for minimum vertex cover, min-
imum dominating set, and maximum independent set for
bounded-degree graphs of subexponential growth. His paper
does not provide any explicit bounds on the running time.

In this paper, we show that the above lower bounds can
be overcome for any bounded-degree hyperfinite class of
graphs. In fact, this is true for a slightly larger family of
graph classes with boundedaveragedegree, which includes
any class of (unbounded degree) graphs with an excluded
minor. More precisely, for any such class of graphs, there
are constant-time(1, εn)-approximation algorithms for min-
imum vertex cover, minimum dominating set, and maximum
independent set. For any class of graphs with an excluded
minor, the running time of our algorithms is2poly(1/ε). Note
that finding algorithms of running time2(1/ε)o(1)

is unlikely,
since by settingε = 1/(3n), this would yield subexponential
randomized algorithms for NP-hard problems. The above
three problems are NP-hard for planar graphs, even with
degree bounded by 3 [9], [10].

1From now on, whenever we say “an approximation algorithm for
problem A”, we mean “an approximation algorithm for the size of the
optimal solution toA”.

2The results of Noga Alon will appear in a joint journal version with [17].

Testing minor-closed properties:Another application of
our techniques is to property testing in the bounded-degree
model [11]. We say that a graph property3 is minor closed
if it is closed under removal of edges, removal of vertices,
and edge contraction. Examples of minor-closed families of
graphs include planar graphs, outerplanar graphs, graphs of
genus bounded by a constant, graphs of tree-width bounded
by a constant, and series-parallel graphs.

In the case being considered, the goal of anε-tester for
a given minor-closed propertyP is to distinguish, with
probability 2/3, graphs that satisfyP from those that need
to have at leastεn edges deleted to satisfyP , whereε > 0.
Goldreich and Ron [11] showed anO(1/ε3) tester for the
property that the input graph is a forest, i.e., does not have
K3 as a minor. Until the breakthrough result of Benjamini,
Schramm, and Shapira [4], who showed that any minor-
closed property can be tested in constant time, this was the
only minor-closed property that was known to be testable
in constant time. However, the running time of the tester

of Benjamini, Schramm, and Shapira is222poly(1/ε)

, and the
analysis is quite involved. We give a simple proof of their
result, and present a tester that runs in2poly(1/ε) time.

Approximation of distance to hereditary properties:A
graph property ishereditary if it is closed under removal
of vertices. Many natural graph families are hereditary,
including all minor-closed graph families, perfect graphs,
bipartite graphs,k-colorable graphs, graphs with an excluded
induced subgraph (see the appendix of [6] for a longer list
of hereditary properties). All those properties are known be
testable in constant time for dense graphs in the adjacency
matrix model even withone-sided error[2], i.e., a graph
having a given property cannot be rejected. This is not
the case in the bounded-degree model. For instance, testing
bipartiteness requiresΩ(

√
n) queries [11], and testing three-

colorability requiresΩ(n) queries [5]. Motivated by these
lower bounds, Czumaj, Shapira, and Sohler [6] turned to
testing properties of specific bounded-degree non-expanding
families of graphs, which include minor-closed families
of graphs. For those graphs, they showed that all hered-
itary properties are testable in constant-time (with one-
sided error). Their proof holds for any hyperfinite family
of bounded-degree graphs.

We say that a hereditary propertyP is degenerateif there
is an empty graph on some number of vertices that does
not haveP . For every non-degenerate hereditaryP , every
hyperfinite classC of bounded-degree graphs, and everyε >
0, one can additively approximate the number of edges that
must be modified (i.e., inserted or removed) up toεn to
achieveP in time independent of the graph size for graphs
in C. It is impossible to specify the running time even for a
fixed class of graphs, sinceP need not even be computable.

3In this paper, all graph properties are defined for graphs with no labels
and are therefore closed under permutation of vertices.



Nevertheless, if a non-degenerateP can be specified via
a (potentially infinite) set of forbiddenconnectedinduced
graphs, and there is anT (n)-time algorithm that checks if
a graph onn vertices hasP , then one can show that the
distance toP to can be approximated in any fixed bounded-
degree class of graphs with an excluded minor in2poly(1/ε) ·
T (poly(1/ε)) time.

The reason behind excluding degenerate hereditary prop-
erties is the following. Every degenerateP excludes an
empty graph onk vertices, for some constantk, which
implies that if a graphG hasP , then it does not have an
independent set of sizek, and therefore, hasΩ(n2) edges.
Since the input graph hasO(n) edges, a large number of
edges must be inserted. On the contrary, for every non-
degenerate hereditary property, the distance to the property
is always of orderO(n), since it suffices to remove all edges
to achieve the property.

A sample application of our result is a(1, εn)-
approximation algorithm for the number of edges that must
be removed from the input bounded-degree planar graph
to make it3-colorable. The running time of the algorithm
can be made2poly(1/ε). The result of Czumajet al. only
guarantees the existence of a constant-time algorithm thatfor
planar bounded-degree graphs, can tell3-colorable graphs
from those that need to have at leastεn edges removed, for
everyε > 0.

Elek [8] proved the existence of constant-time approxima-
tion algorithms for distance approximation to union-closed
monotone properties in bounded-degree graphs of subex-
ponential growth. Even though a union-closed monotone
property need not be hereditary, all natural union-closed
monotone properties are hereditary4. On the other hand,
perfectness is hereditary, but is not monotone.

For general bounded-degree graphs, Marko and Ron [16]
give a constant-time(O(1), ε)-approximation algorithm for
the distance toH-freeness, whereH is an arbitrary fixed
graph. They also show a constant-time(1, ε)-approximation
algorithm for the distance to cycle-freeness.

Local distributed approximation algorithms:A dis-
tributed algorithm islocal if it runs in a number of rounds
that is independent of the size of the underlying graph. The
first paper on constant-time graph approximation algorithms
due to Parnas and Ron [18] was based on the observation that
given a local distributed algorithms for finding a solution to a
graph problem, the size of the solution can be approximated
by sampling a small number of vertices in the graph, and
simulating the distributed algorithm on their neighborhood.
On the other hand, Nguyen and Onak [17] noticed that
an oracle for a large matching, which they designed for a
constant-time algorithm, can be simulated for most nodes
on a bounded radius neighborhood. Therefore, a distributed

4If a union-closed monotone property is closed under removing an
isolated vertex, then it is hereditary. All union-closed monotone properties
listed by Elek [8] are hereditary and non-degenerate.

algorithm can construct a good solution in a constant number
of communication rounds.

Our partitioning oracle, which provides query access
to a partition of vertices, can also be simulated locally.
We collect a constant size neighborhood and the random
numbers assigned to it. Simulating the oracle’s computation
for sufficiently many rounds, we assign a partition to most
of the nodes, and those that we do not succeed for in the
given time limit, create their own parts. This modification
cuts additional edges, but their number is small as long as
the number of nodes for which simulation does not succeed
is small. Such a partition can be used to compute a good
approximate solution to many combinatorial problems, in a
manner similar to our constant-time algorithms.

Lenzen, Oswald, and Wattenhofer [13] gave a local
multiplicative O(1)-approximation algorithm for minimum
dominating set. Our techniques yield a distributed algorithm
that computes an additive±εn approximation in constant
time, for any ε > 0. It is an interesting question if our
techniques can be combined with theirs to give a local
(1 + ε)-approximation algorithm for this problem.

2. PRELIMINARIES

Model: We assume that an algorithm is given the
numbern of vertices, and can uniformly sample from the set
of vertices inO(1) time. The paper uses thebounded-degree
model introduced by Goldreich and Ron [11]. In this model,
the degrees of all vertices are bounded byd = O(1), and
the algorithm has query access to the adjacency list of each
vertex. In this paper we assume that we can read a single
adjacency list inO(d) time.

Some of our approximation algorithms also work for
graphs with boundedaveragedegree. We usẽd to denote
a bound on the average degree of a graph. In this case, we
assume that an algorithm can learn the degree of a given
vertex in O(1) time, and that it can read the adjacency
list of a given vertex in time proportional to the number
of neighbors.

Partitions: We say thatP is apartition of a setS if it is
a family of nonempty subsets ofS such that

⋃

X∈P X = S,
and for all X, Y ∈ P either X = Y or X ∩ Y = ∅. We
write P [q] to denote the set inP that contains an element
q ∈ S.

Uniformity and Non-Uniformity:Throughout the paper,
we call a testers, an approximation algorithm, or an oracle
uniform if it takes ε, the approximation parameter, as input.
Otherwise, we call itnon-uniform.

Graph Minors: A graph H is a minor of a graphG,
if H can be obtained fromG by vertex removals, edges
removals, and edge contractions. A graph isH-minor free
if it does not haveH as a minor. A graph propertyP is
minor-closedif for every graphG ∈ P , every minor ofG
also belongs toP . The Robertson-Seymour theorem [21]
says that every minor-closed property can be expressed via



a constant number of excluded minors. Moreover, Robertson
and Seymour [20] showed that for every minorH , there is
a deterministicO(n3)-time algorithm for checking ifH is
present in the input graph.

Lemma 2 (Proposition 4.1 in [1]):For every graphH ,
there exists a constantCH such that ifG is an n-vertex
H-minor free graph, then there exists a setS of at most
CH · n/

√
t vertices ofG such that removing vertices of

S leaves no connected component on more thant nodes
(t > 1).

Corollary 3: Let H be a fixed graph. There exists a
constantCH > 1 such that for everyε ∈ (0, 1), everyH-
minor free graph with degree bounded byd is (εdn, C2

H/ε2)-
hyperfinite.

Proof: Set t in Lemma 2 toC2
H/ε2 > 1. One can

remove fromG at mostεn vertices so that each remaining
connected component has at mostC2

H/ε2 vertices. Since
the degree of each vertex inG is bounded byd, it suffices
to remove fromG the edges incident to those vertices to
achieve the same property. The number of these edges is at
mostεdn.

Notation: We write VC(G) to denote the minimum
vertex cover size for a graphG.

Let G be a graph. We writeG|k, k ∈ N to denoteG
without the edges that are incident to vertices of degree
higher thank in G. For a class of graphsC, we define:

C|k = {G|k : G ∈ C}.

3. LOCAL PARTITIONS AND THEIR APPLICATIONS

We now define the main tool that is used in the paper. A
partitioning oracle provides query access to a global partition
of the graph into.

Definition 4: We say thatO is an(ε,k)-partitioning oracle
for a classC of graphs if given query access to a graph
G = (V, E) in the adjacency-list model, it provides query
access to a partitionP of V . For a query aboutv ∈ V , O
returnsP [v]. The partition has the following properties:

• P is a function of the graph and random bits of the
oracle. In particular, it does not depend on the order of
queries toO.

• For every v ∈ V , |P [v]| ≤ k and P [v] induces a
connected graph inG.

• If G belongs toC, then |{(v, w) ∈ E : P [v] 6=
P [w]}| ≤ ε|V | with probability 9/10.

The most important property of our oracle is that with
high probability, it can compute answers in time independent
of the graph size by using only local computation. We prove
the following lemma for any class of hyperfinite graphs. A
relatively simple proof appears in Section 4.

Lemma 5:Let G be an(ε, ρ(ε))-hyperfinite graph with
degree bounded byd ≥ 2. There is an(εd, ρ(ε3/54000))-
partitioning oracle. Letq be the number of non-adaptive

queries to the oracle. With probability1 − δ, the oracle

makes q
δ · 2dO(ρ(ε3/54000))

queries to the input graph, and
the total amount of the oracle’s computation isq

δ log q
δ ·

2dO(ρ(ε3/54000))

.
By combining the above oracle with with Corollary 3

one can achieve explicit bounds for any class of graphs
with an excluded minor. The expected number of queries
of an (εd, CH/ε6)-partitioning oracle to the input graph is

2dO(1/ε6)

for every query to the oracle. We show a more
efficient oracle for bounded-degreeρ-hyperfinite graphs with
bounded functionρ.

Lemma 6:Let R : R
2 → R be a polynomial. LetC be

a class of graphs such that, for everyd ∈ N+, and every
ε ∈ (0, 1), C|d is (ε, R(d, ε))-hyperfinite. There is a uniform
partitioning oracle that takesd ∈ Z+ andε ∈ (0, 1) as input
and acts as an(ε, poly(1/ε, d))-partitioning oracle forC|d.
Let q be the number of queries to the oracle. The oracle
makesq · 2poly(ε,d) queries to the input graph and the total
amount of the oracle’s computation is(q log q) · 2poly(ε,d).

We omit the full proof of the above lemma in this version
of the paper. We give a sketch of our techniques in Section 4.

3.1. Constant-Time Approximation Algorithms

We first describe an application of partitioning oracles
to approximating the size of an optimal solution for com-
binatorial problems on restricted classes of graphs. As an
example, consider the minimum vertex cover problem for
planar graphs. We show that an(ε, poly(1/ε))-partitioning
oracle for planar graphs of degreeO(1/ε) can be used to
partition the input graph into components of sizepoly(1/ε).
The union of optimal vertex covers over all connected
components constitutes a set of size withinO(εn) of the
minimum vertex cover size of the original graph. By sam-
pling O(1/ε2) vertices and checking for each of them if
it belongs to the optimal vertex cover for their component,
we get a(1, O(εn))-approximation to the minimum vertex
cover size of the original graph.

A formal lemma and proof follow. To achieve a good
approximation, a bound on the average degree is needed.
Note that every class of graphs with an excluded minor has
average degree bounded by a constant.

Lemma 7:Let C be a class of graphs with average degree
bounded byd̃. Let ε > 0. Let O be an(ε/3, k)-partitioning
oracle for the classC|3d̃/ε. There is a(1, εn)-approximation
algorithm for the minimum vertex cover size in any graph
G = (V, E) in C. The algorithm

• givesO query access to the graphG|3d̃/ε,
• makesO(1/ε2) uniformly distributed queries toO,
• uses2O(k)/ε2 + O(d̃k/ε3) time for computation.

The same holds for the maximum independent set problem,
and the minimum dominating set problem.

Proof: All edges from G missing in G|3d̃/ε can be

covered by vertices of degree greater than3d̃/ε in G. We



write G′ = (V, E′) to denoteG|3d̃/ε. Note that the number
of such vertices is by Markov’s inequality at mostεn/3.
Therefore, we have

VC(G) − εn/3 ≤ VC(G′) ≤ VC(G).

Each query about the adjacency list of a vertexv in G′

can easily be computed inO(3d̃/ε) time. If the degree ofv
is greater than3d̃/ε in G, thenv is an isolated vertex inG′.
Otherwise, we go over the neighbors ofv in G, and each
neighborw in G stays a neighbor inG′ if and only if w
has degree greater than3d̃/ε in G. We giveO query access
to G′. With probability9/10, O provides query access to a
partitionP such that the number of edges(v, w) ∈ E′ with
P [v] 6= P [w] is at mostεn/3. Let G′′ = (V, E′′) beG′ with
those edges removed. Since they can be covered withεn/3
vertices, we have

VC(G′) − εn/3 ≤ VC(G′′) ≤ VC(G′),

that is,

VC(G) − 2εn/3 ≤ VC(G′′) ≤ VC(G).

To get a (1, εn)-approximation toVC(G), it suffices to
estimateVC(G′′) up to ±εn/6. By the Chernoff bound,
we achieve that with probability9/10 by samplingO(1/ε2)
vertices and computing the fraction of them in a fixed
minimum vertex cover ofG′′. Such a vertex cover can be
obtained by computing a minimum vertex cover for each
connected component ofG′′ independently. Therefore, for
every vertexv in the sample, we obtainP [v] from O. We
compute a minimum vertex cover for the component induced
by P [v] in such a way that the vertex cover does not depend
on which vertex inP [v] was the query point. Finally, we
check if the query pointv belongs to the computed vertex
cover for the component. In total, our procedure takes at
mostO

(

k · d̄/ε3
)

+ 2O(k)/ε2 time.
To prove the same statement for maximum independent

set, it suffices to notice that removing edges incident to the
high degree vertices increases the maximum independent set
by at mostεn/3. For minimum dominating set, we assume
that all the high degree nodes are in the dominating set,
and we take this into account when we compute optimal
solutions for each connected component in the partition. This
can only increase the solution size byεn/3.

We now use the already recalled fact that the average
degree of a graph with an excluded minor isO(1). We
combine Lemma 6 and Lemma 7, and achieve the following
corollary.

Corollary 8: For every H-minor free family of graphs
(with no restriction on the maximum degree), there are
(1, εn)-approximation algorithms for the optimal solution
size for minimum vertex cover, maximum independent set,
and minimum dominating set that run in2poly(1/ε) time.

Algorithm 1: Tester forH-Minor Freeness (for suffi-
ciently large graphs)
Input: query access to a partitionP given by an

(εd/4, k)-partitioning oracle forH-minor free
graphs with degree bounded byd for the input
graph

f := 01

for j = 1, . . . , t1 = O(1/ε2) do2

Pick a randomv ∈ V and a randomi ∈ [d]3

if v has≥ i neighbors, and thei-th neighbor ofv4

not in P [v] then f := f + 1

if f/t1 ≥ 3
8ε then REJECT5

Select independently at random a setS of t2 = O(1/ε)6

vertices of the graph
if the graph induced by

⋃

x∈S P [x] is not H-minor free7

then REJECT
else ACCEPT8

3.2. Testing Minor-Closed Properties

We now describe how partitioning oracles can be used
for testing if a bounded-degree graph has a minor-closed
property. The constant-time testability of minor-closed prop-
erties was first established by Benjamini, Schramm, and
Shapira [4].

We now recall the definition ofproperty testingin the
bounded degree model [11]. A graphG is ε-far from a
propertyP if it must undergo at leastεdn graph operations
to satisfyP , where a single graph operation is either an edge
removal or an edge insertion. Anε-testerT for propertyP
is a randomized algorithm that has query access toG in the
sense defined in the preliminaries, and:

• if G satisfiesP , T accepts with probability at least2/3,
• if G is ε-far from P , T rejects with probability at least

2/3.

Lemma 9:Let H be a fixed graph. LetO be an(εd/4, k)-
partitioning oracle for the class ofH-minor free graphs with
degree bounded byd. There is anε-tester for the property
of being H-minor free in the bounded-degree model that
providesO with query access to the input graph, makes
O(1/ε2) uniform queries toO, and usesO(dk/ε+k3/ε6) =
poly(d, k, 1/ε) time for computation.

Proof: Our tester is Algorithm 1. The valuet1 equals
C1/ε2 for a sufficiently high constantC1 such that by the
Chernoff bound the number of edges cut by the partitionP
is approximated up to±εdn/8 with probability 9/10. Let
t3 = C2/ε be an upper bound on the expected time to hit a
set of sizeε|X |/2 by independently taking random samples
from X , whereC2 is a sufficiently large constant. We set
t2 in the algorithm to10 · q · t3, whereq is the number of
connected components inH . Finally, we sett4 to C3 · k · t22
for a sufficiently high constantC3 such that for graphs on



more thant4 nodes, the probability that two samples fromS
belong to the same componentP [v] is at most1/10. If the
number of vertices in the graph is at mostt4 = O(k/ε2), we
read the entire graph, and check if the input isH-minor free
in O((k/ε2)3) time. For larger graphs, we run Algorithm 1.

If G is H-minor free, then the fraction of edges cut by
P is with probability 1 − 1/10 at mostεdn/4. If this is
the case, the estimate on the number of broken edges that
is computed by tester is at most3εdn/8 with probability
1 − 1/10. Moreover, every induced subgraph ofG is also
H-minor free, soG cannot be rejected in the loop in Line 5
of the algorithm. Hence,G is accepted with probability at
least8/10 > 2/3.

Consider now the case whenG is ε-far. If the partition
P cuts more thanεdn/2 edges, the graph is rejected with
probability1−1/10. We therefore assume in Steps 6–8 that
P cuts less thanεdn/2 edges. LetG′ be the new graph after
the partition.G′ remainsε/2-far fromH-minor freeness, and
there are at leastεdn/2 edges that must be removed to get an
H-minor free graph. This implies thatG′ is ε/2-far fromHi-
minor freeness also for every connected componentHi, 1 ≤
i ≤ q, of H . For everyi, at least anε/2-fraction of nodes
belong to a component that is notHi-minor free. Therefore,
it suffices to pick in expectationt3 random nodes to find
a component that is notHi-minor free. Forq connected
components ofH , it suffices to pick in expectationq · t3
random nodes to find each of them. By picking,10 · q ·
t3 random nodes, we find the components with probability
1 − 1/10. Furthermore, since the considered graph is large,
i.e., has at leastt4 nodes, the components for eachi are
different with probability1−1/10, and the graph is rejected
in Step 7. Therefore, the probability that a graph that isε-far
is accepted is at most3/10 < 1/3.

By combining Lemma 6 with Lemma 9, we obtain a
2poly(1/ε)-time tester forH-minor freeness for graphs of
degreeO(1). Since every minor-closed property can be
expressed via a finite set of excluded minorsH [21], it
suffices to test if the input isε/s-far from being minor free
for each of them, wheres is their number. We arrive at the
following theorem.

Theorem 10:For every minor-closed propertyP , there is
a uniform ε-tester forP in the bounded-degree model that
runs in2poly(1/ε) time.

3.3. Approximating Distance to Hereditary Properties For
Hyperfinite Graphs

Parnas, Ron, and Rubinfeld [19] studied generalizations
of property testing:tolerant testingand distance approx-
imation. For a given propertyP , and an appropriately
defined distance toP , an (ε1, ε2)-tolerant testerfor P tells
apart inputs at distance at mostε1 from P and those at
distance at leastε2 from P with probability at least2/3,
where 0 ≤ ε1 < ε2. An (α, β)-distance approximation
algorithm for P computes an(α, β)-approximation to the

Algorithm 2: Approximating distance to not having a
set of connected graphs as induced subgraphs
Input: setH of connected graphs (does not include the

graph on one vertex)
Input: query access to a partitionP given by an

(εd/4, k)-partitioning oracle for a classC of
graphs

f := 01

for j = 1, . . . , t = O(1/ε2) do2

Pick a randomv ∈ V3

q := the minimum number of edge operations to4

make the graph induced byP [v] have no graph in
H as an induced subgraph
f := f + q

d·|P [v]|5

Returnf/t + ε/2.6

distance of the input toP with probability 2/3. In the
following, we study constant-time(1, δ)-distance approxi-
mation algorithmswith δ being a parameter. Such algorithms
immediately yield constant-time(ε1, ε2)-tolerant testers by
settingδ to (ε2 − ε1)/2.

In the bounded-degree model, thedistance to a given
property P is k/(dn), where k is the minimum number
of graph operations (edge insertions and deletions) that are
needed to make the graph achieveP . All input graphs have
the maximum degree bounded byd, but the closest graph
with propertyP need not have the degree bounded byd.

Lemma 11:Let H be a fixed set of connected graphs
that does not contain the 1-vertex graph. LetO be an
(εd/4, k)-partitioning oracle for a classC of graphs with
degree bounded byd, wherek is a function of onlyε. There
is a (1, ε)-approximation algorithm for the distance to the
property of not having any graph inH as an induced sub-
graph, for graphs inC. The algorithm providesO with query
access to the input graph, makesO(1/ε2) random uniformly
distributed queries toO, and uses(O(dk)+2O(k2))/ε2 time
for computation.

Proof: We use Algorithm 2. The partitionP cuts at
mostεdn/4 edges with probability1− 1/10, which implies
that the distance to the property changes by at most±ε/4.
Consider the new graphG′ with connected components
corresponding to the partition ofP . Every graph inH ∈ H
is connected, soH can only appear as an induced subgraph
of a connected component ofG′. Therefore, it does not make
sense to add edges connecting components ofG′. This would
not exclude any existing induced graph fromH. Hence, any
shortest sequence of operations that removes fromG′ all
induced copies of graphs inH, does this over each connected
component inG′ separately.

The valuet = O(1/ε2) in the algorithm is chosen such
that we estimate the number of edge operations divided by



dn up to ±ε/4 with probability 1 − 1/10 by the Chernoff
bound. Therefore, the algorithm returns a correct estimate
with probability at least1 − 1/10 − 1/10 = 4/5. The best
set of edge operations can be found for a single component
in 2O(k2) time by enumerating all possible modifications,
and verifying that none of the graphs inH on at mostk
nodes are present as an induced subgraph.

Lemma 12:Let P be a non-degenerate hereditary prop-
erty. LetO be an(εd/16, k)-partitioning oracle for a class
C of graphs with degree bounded byd. There is a (non-
uniform) (1, ε)-approximation algorithm for the distance to
P for graphs inC. The algorithm providesO with query
access to the input graph, and makes a constant number of
uniformly distributed queries to the oracle. Its running time
is independent of the graph size.

Proof: The proof reuses some ideas of Czumaj, Shapira,
and Sohler [6], who showed a one-sided tester for hereditary
properties of hyperfinite classes of bounded-degree graphs.

Let H be the set of all graphs that do not haveP . Since
P is hereditary, if a graph has any of the graphs inH as
an induced subgraph, it does not haveP . Consider a subset
H′ of H that only consists of graphsH ∈ H that have all
components of size at mostk. There are at mostt = 2O(k2)

different connected graphsA1, . . . ,At on at mostk vertices.
Every graph inH′ can be represented as a vectora ∈ N

t,
whereai is the number of timesAi appears as a connected
component. For a graphH ∈ H′, its configurationis the
vectorc ∈ {0, 1}t such that for eachi, 1 ≤ i ≤ t, ci = 0 if
and only if ai = 0. We say that a configurationc ∈ {0, 1}t

is present if there is a graph inH′ with configurationc.
We call the one-vertex graphtrivial . Recall thatH is non-
degenerate. This implies that for each present configuration
c, there isi such thatci = 1, andAi is non-trivial. A subset
X of A = {Ai : 1 ≤ i ≤ t} is hitting if it does not contain
the trivial graph, and for every present configurationc, there
is j such thatcj = 1 andAj ∈ X . For non-degenerateH,
there always exists at least one hitting subset ofA.

Since there exists a(εd/16, k)-partitioning oracle for the
input graphG, G is (εd/16, k)-hyperfinite, and there is a
graph G′ with components of size at mostk that can be
created by removing at mostεdn/16 edges fromG. G′ is
at distance at mostε/16 from G. The distance ofG′ to
P is bounded from above by the minimum distance from
having no induced subgraph inX , whereX is taken over all
hitting sets. If we exclude at least one connected component
for every graph inH′, we get a graph that satisfiesP . We
write M to denote the above minimum distance to excluding
a hitting set fromG′. Note that the shortest sequence of
operations that exclude a given hitting setX does not add
edges between different connected components ofG. These
edges do not remove any existing copy of a graph inX .
Note thatM is bounded by1, since it suffices to remove all
edges inG′ to achieveP .

We now claim that in fact, we have to exclude some hitting

set almost entirely for sufficiently large graphs, unless we
want to conduct a long sequence of operations. For every
present configurationc ∈ {0, 1}t (the number of them is
finite), we fix an arbitrary graphHc ∈ H′ with this config-
uration. Consider any sequence of at most(M − ε/4) · dn
operations that turnsG′ into a graphG′′. We will show that
for n greater than some constant (which depends onε, d,
k, andP), G′′ has an induced copy of one of the graphs
Hc. Let G⋆ be G′′ with only edges that connect vertices in
the same connected component inG′. By the definition of
M , G⋆ must beε/4-far from having any of the hitting sets
excluded. We claim that there is a present configurationc
such that for every non-trivialAi with ci = 1, the distance
of G⋆ to not havingAi as an induced subgraph is at least
ε/(8k2t). Suppose for contradiction that for every present
configurationc, there isi such thatAi is a non-trivial graph,
ci = 1, and the distance ofG⋆ from not havingAi as an
induced subgraph is less thanε/(8k2t). For every present
configurationc, removing such anAi from G⋆ requires a
sequence of fewer thanεdn/(8k2t) graph operations. For
every inserted or deleted edge(u, v) by such an sequence
of operations, let us delete fromG⋆ all edges incident to
bothu andv. This is fewer thanεdn/(4 ·2t) graph deletions
for every present configurationc, and this way we do not
introduce any new connected induced subgraph. By going
over all present configurations, we can entirely remove all
induced copies of at least one graph in each configuration
with fewer thanεdn/4 graph deletions. This implies that
we can exclude a hitting set with fewer thanεdn/4 graph
operations. This yields a contradiction.

We proved that there is a present configurationc such
that for everyi such thatci = 1 and Ai is non-trivial, the
distance ofG⋆ to not havingAi as an induced subgraph is at
leastε/(8k2t). Note that because each connected component
in G⋆ has at mostk vertices, the number of vertex disjoint
copies ofHc is Ωε,d,k(n) in G⋆. Let q be the number of
connected components inHc. We can pick setsIi, 1 ≤ i ≤
q, of subgraphs ofG⋆ such that eachIi, 1 ≤ i ≤ q, is
a set of induced copies of thei-th connected component
of Hc, |Ii| ≥ ⌊n/C⌋ (where C only depends onε, d, k,
and the choice of graphsHc), and the graphs in

⋃

i Ii are
pairwise vertex disjoint. Note that each induced subgraph
of G⋆ that appears inIi is also an induced graph inG′′.
There are at least⌊n/C⌋q ways of selecting one subgraph
from eachIi. Consider one of such choices. If there were no
additional edges between the selected subgraphs, this would
give us an induced copy ofHc. The total number of edges
in G′′ is at most2dn, and each edge connects at most 2
subgraphs in

⋃

Ii. This means that each edge can make at
most nq−2 choices of one subgraph from eachIi not give
an induced copy ofHc. For sufficiently largen, we have
2dn · nq−2 < ⌊n/C⌋q, and there is an induced copy ofHc.
Summarizing, for sufficiently large graphs, the distance of
G′ to P is at leastM − ε/4.



Algorithm 3: The global partitioning algorithm with
parametersk andδ

(π1, . . . , πn) := random permutation of vertices1

P := ∅2

for i = 1, . . . , n do3

if πi still in the graphthen4

if there exists a(k, δ)-isolated neighborhood of5

πi in the remaining graphthen
S := this neighborhood6

else7

S := {πi}8

P := P ∪ {S}9

remove vertices inS from the graph10

Therefore, the distance ofG to P is betweenM − 5ε/16
andM + ε/16. Moreover,M is approximated up to±ε/16
by M ′, which we define as the distance ofG to entirely ex-
cluding one of the hitting sets. Therefore, to get a sufficiently
good approximation to the distance ofG to P , it suffices
to compute(1, εn/4)-approximation toM ′ for sufficiently
large graphs. This can be done by using the algorithm of
Lemma 11 for all hitting sets, and amplifying the probability
of its success in the standard way. For small graphs, we hard-
wire the exact solution to the problem.

4. A SIMPLE PARTITIONING ORACLE

4.1. Local Computation

We reuse a general method for local computation that was
introduced by Nguyen and Onak [17]. Consider a graph with
random numbers in[0, 1] assigned to its vertices. Suppose
that to compute a specific functionf of a vertexv, you first
need to compute recursively the same function for neighbors
of v that were assigned a smaller number than that ofv. The
following lemma gives a bound on the expected number of
vertices for whichf must be computed.

Lemma 13 ([17], proof of Lemma 12):Let G = (V, E)
be a graph of degree bounded byD ≥ 2, and letg : V ×
(V ×A)⋆ → A be a function. A random numberr(v) ∈ [0, 1]
is independently and uniformly assigned to each vertexv of
G. A function fr : V → A is defined recursively, usingg.
For each vertexv, we have

fr(v) = g(v, {(w, fr(w)) : r(w) < r(v)}).

Let S ⊆ V be a set of verticesv selected independently of
r, for which we want to learnfr(v). The expected number of
verticesw for which we have to recursively computefr(w)
in order to computefr(v) for v ∈ S is at most|S| · 2O(D).

4.2. The Oracle

We introduce an auxiliary definition of a small subsetS
of vertices that contains a specific node, and has a small
number of outgoing edges relatively toS.

Definition 14: Let G = (V, E) be a graph. For any subset
S ⊂ V , we write eG(S) to denote the number of edges in
E that have exactly one endpoint inS.

We say thatS ⊆ V is a (k, δ)-isolated neighborhoodof
v ∈ V if v ∈ S, the subgraph induced byS is connected,
|S| ≤ k, andeG(S) ≤ δ|S|.

We now show that a random vertex has an isolated
neighborhood of required properties with high probability.

Lemma 15:Let G = (V, E) be aρ(ε)-hyperfinite graph
with degree bounded byd, whereρ(ε) is a function fromR+

to R+. Let G′ = (V ′, E′) be a subgraph ofG that is induced
by at leastδn vertices. For anyε ∈ (0, 1), the probability that
a random vertex inG′ does not have a(ρ(ε2δ/1800), ε/30)-
isolated neighborhood inG′ is at mostε/30.

Proof: Any induced subgraph ofG can still be parti-
tioned into components of size at mostρ(ε) by removing at
most εn edges. SinceG′ has at leastδn vertices, it is still
(ε/δ, ρ(ε))-hyperfinite for anyε > 0, or equivalently, it is
(ε, ρ(ε · δ))-hyperfinite for anyε > 0.

Therefore, there is a setS′ ⊆ E′ of at most(ε2/1800)|V ′|
edges such that if all the edges inS′ are removed, the
number of vertices in each connected component is at most
ρ(ε2δ/1800). Denote the achieved partition of vertices into
connected components byP . We have

Ev∈V ′

[

eG(P [v])

|P [v]|

]

=
∑

S∈P

|S|
|V ′| ·

eG(S)

|S| =
2|S′|
|V ′| ≤ ε2

900
.

By Markov’s inequality, the probability that a random
v ∈ V ′ is such thate(P [v])/|P [v]| > ε

30 is at most
ε/30. Otherwise,P [v] is an (ρ(ε2δ/1800), ε/30)-isolated
neighborhood ofv.

Finally, we now use the above lemma to construct a par-
titioning oracle.

Proof of Lemma 5: We set k = ρ(ε3/54000) and
δ = ε/30. Consider the global Algorithm 3 with these
parameters. The algorithm partitions the vertices of the input
graph into sets of size at mostk. We define a sequence
of random variablesXi, 1 ≤ i ≤ n, as follows. Xi

corresponds to thei-th vertex removed by Algorithm 3 from
the graph. Say, the remaining graph hasn − t vertices, and
the algorithm is removing a setS of r vertices. Then we
set Xt+1 = . . . = Xt+r = eG′(S)/r, where G′ is the
graph before the removal ofS. Note that

∑n
i=1 Xi equals

the number of edges between different parts inP . For every
i, if Xi corresponds to a setS that was a(k, δ)-isolated
neighborhood of the sampled vertex, thenXi ≤ δ = ε/30.
Otherwise, we only know thatXi ≤ d. However, by
Lemma 15, if i ≤ n − εn/30, this does not happen with
probability greater thanε/30. Therefore, we have for every



i ≤ n − εn/30

E[Xi] ≤ ε/30 + d · ε/30 ≤ 2εd/30

For i > n − εn/30, we again use the boundXi ≤ d.
Together, this gives that the expected number of edges con-
necting different parts ofP is at most2εdn/30+εdn/30 <
εdn/10. Markov’s inequality implies that the number of such
edges is at mostεdn with probability 9/10.

It remains to show how Algorithm 3 can be simulated
locally. For each vertexv, we want to computeP [v]. Instead
of a random permutation, we independently assign a random
numberr(v) uniformly selected from the range[0, 1]. We
only generater(v)’s when they are necessary, and we store
them as they may be needed later again. The numbers
generate a random ordering of vertices. To computeP [v],
we first recursively computeP [w] for each vertexw with
r(w) < r(v) and distance tov at most2 ·k. If v ∈ P [w] for
one of thosew, thenP [v] = P [w]. Otherwise, we search for
a (k, δ)-isolated neighborhood ofv, keeping in mind that all
vertices inP [w] that we have recursively computed are no
longer in the graph. If we find such an neighborhood, we
setP [v] to it. Otherwise, we setP [v] = {v}.

To bound the complexity of the oracle, we use Lemma 13.
Our computation graph isG⋆ = (V, E⋆) where E⋆ con-
nects all pairs of vertices that are at distance at most
2 · k in the input graph. The degree ofG⋆ is bounded
by D = dO(ρ(ε3/54000)). The expected number of ver-
tices for which we have to computeP [v] is at most

q · 2dO(ρ(ε3/54000))

. The query complexity at each vertex is
bounded bydO(ρ(ε3/54000)). By Markov’s inequality, both
the query complexity and the number of vertices visited are

bounded byq · 2dO(ρ(ε3/54000))

/δ with probability 1 − δ.
The required isolated neighborhood of a vertex can easily

be found in2dO(ρ(ε3/54000))

time if it exists. An additional
cost in computation comes from the need to find ifr(v)
was assigned before. By using a standard dictionary, this
can be done in time at most logarithmic in the number of
r(v) that were assigned. This gives an additional logarithmic
factor in the time complexity.

5. AN EFFICIENT PARTITIONING ORACLE

In this section, we sketch the ideas behind the partitioning
oracle of Lemma 6. A detailed description is deferred to the
full version of the paper.

5.1. The Partitioning Method

In order to locally simulate Algorithm 3, the simple oracle
of Section 4 has to compute the graph partition recursively
for a large number of nodes. In particular, it may have to
follow long chains of dependencies. In the improved parti-
tioning oracle, we try to avoid such expensive dependencies.
Our new global algorithm proceeds in a number of rounds. In
each round, it finds a maximal set of disjoint neighborhoods.

Then, it removes these neighborhoods from the graph at once
and moves on to the next round.

Since each neighborhood removed in roundk only de-
pends on the neighborhoods that were removed in previous
rounds, its dependency chain has length at mostk. If we
bound the total number of rounds, then we also bound the
number of queries made by each vertex to locally compute
its partition. In order to bound the number of rounds, we
show that in each round, the expected fraction of vertices
removed is at leastpoly(ε/d). Therefore, after apoly(d/ε)
number of rounds, the remaining graph has less thanεdn/2
edges with high probability, and the algorithm can terminate.

To simulate the algorithm locally, we observe that each
round can be simulated for a given vertexv by learning
the graph at the end of the previous round within distance
poly(d/ε) from v. Since there are onlypoly(d/ε) rounds, a
vertex can simulate the global algorithm by making at most
dpoly(d/ε) queries to the input graph.

5.2. Growing Neighborhoods

When trying to show that the expected fraction of vertices
removed in each round ispoly(ε/d), it is easy to realize that
the naı̈ve neighborhood growing algorithm will not work,
since an exponential number of prospective neighborhood
can intersect locally. (In such an algorithm, each vertex
queries all vertices within distancepoly(d/ε), and uses
brute-force search to find an isolated neighborhood of size
poly(d/ε).)

Instead, we use the Volume-Biased Evolving Set Process
(VBESP) due to Andersen and Peres [3] to grow a neigh-
borhood for each node. With a small modification to the
algorithm, we show a lemma similar to their Theorem 2:

Lemma 16:Let A ⊆ V be any(k, ε5/(303 ·240 ·960 ·d3 ·
log(2kd)))-isolated neighborhood. There is a subsetAT ⊆
A of size at least(1− ε)A for which the following holds. If
v ∈ AT , then with probability at least1−ε/60, we can find
an isolated neighborhoodSv will satisfy all the following:

1) Sv is a (2k, ε/30)-isolated neighborhood.
2) |Sv \ A| ≤ ε · |Sv|/30 · d

The neighborhoods grown by the VBESP have properties
that allow for avoiding intersections of too many neighbor-
hoods at the same time. Also, the VBESP runs in near linear
time, which is exponentially better than the naı̈ve algorithm.
We believe that the VBESP can be helpful for other constant-
time algorithms.

6. OPEN QUESTION

The main open problem is whether there exists a parti-
tioning oracle with query or running time complexity that
is polynomial in 1/ε for graphs with an excluded minor.
An affirmative answer would imply apoly(1/ε) tester
for minor-closed properties in the bounded degree model,
solving Open Problem 4 in [4].
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