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Abstract—We introduce a new tool for approximation and The separator theorem was generalized to arbitrary graphs
testing algorithms callegartitioning oracles We develop methods with an excluded minor by Alon, Seymour, and Thomas [1],

for constructing them for any class of bounded-degree grath 54 gimjlar polynomial-time approximation schemes imme-
an excluded minor, and in general, for any hyperfinite class odiately followed

bounded-degree graphs. These oracles utilize ¢odgl compu-

tation to consistently answer queries abouglabal partition that An importaljt implipation of the separator theorem _iS that
breaks the graph into small connected components by removinany graph with a fixed excluded minor with maximum
only a small fraction of the edges. degree bounded by can be partitioned into small com-

We illustrate the power of this technique by using it to exten ponents of size at mostoly

and simplify a number of previous approximation and testing (d,1/) by removing only an
results for sparse graphs, as well as to provide new resodts t e-fraction of edges. In this paper, we develop techniques

were unachievable with existing techniques. For instance: for _|9C3!|y computing SUCh a partition. We construct a
« We give constant-time approximation algorithms for theesiz Partitioning oraclethat given query access to a minor-free
of the minimum vertex cover, the minimum dominating set, graph, provides query access to a fixed partition, and uses an
and the maximum independent set for any class of graph@mount of computation that is independent of the graph size.

with an excluded minor. , Just like knowing the entire partition is useful for finding
» We show a simple proof that any minor-closed graph property,, good approximate solution, our local version is useful
is testable in constant time in the bounded degree model. !

. We prove that it is possible to approximate the distance!cor approximating the size of th‘? optimal 50|_U.ti0_” in time
to almost any hereditary property in any bounded degreéndependent of the actual graph size. Our partitioninglesac
hereditary families of graphs. Hereditary properties ¢éiest  also find applications to other testing and approximation

include bipartiteness;-colorability, and perfectness. problems that we describe in more detail below.
Graph classes:We construct partitioning oracles for
1. INTRODUCTION hyperfinite classes of graphs with bounded degree. Infor-

mally, hyperfinite graphs are those that can be partitioned
Solving combinatorial graph problems (such as minimum y, ypertinite grap part

: ) id dent set. mini q .into constant-size components by removing a small fraction
vertex cover, maximum independent set, minimum domi-, edges. A formal definitions follows.
nating set) has been one of the main research goals o Definition 1:

theoretical computer science. In the early 1970s, many of . Let G — (V,E) be a graph( is (c, k)-hyperfiniteif

those problems unfortunately turned out to be as hard as the it is possible to remove|V'| edges of the graph such

satisfiability problem, due to the breakthrough result offKa .
([12], see the survey [10]). In the 1990s, the discovery of ;T?é t;]tenr](ce:kamlng graph has connected components of

the PC.P trleorerlntr_esult_ed |r]:tsh0\Iilv::?]thgt even ;‘md!ngtgood o Let p be a function fromR, to R;. A graphG is p-
approximate soiutions 15 often -hard (see for instance hyperfiniteif for everye > 0, G is (¢, p(¢))-hyperfinite.

[23)). Let C be a class of [ initei
. . : . graphg. is p-hyperfiniteif every
In spite of these negative results, multiple methods for graph inC is p-hyperfinite.

finding good approximate solutions for several restricted i -
classes of graphs have been developed over the years Examples of bounded-degree hyperfinite classes of graphs

Notably, Lipton and Tarjan [14] proved the separator the_mcluqle bounded-degree graphs with an excluded minor [1]
. : ... (for instance, bounded-degree planar graphs, bounded-
orem for planar graphs, which resulted in polynomial-time

approximation schemes for several combinatorial prob]emsdegree graphs with constant tree-width), bounded-degree

) ) i . graphs of subexponential growth [7], and the class of non-
which remain NP-hard even restricted to planar graphs [15]éxpanding bounded-degree graphs considered by Czumaj,
*Supported in part by the Keck Foundation Shapira, an(_j Sohler [6]. o
TSupported in part by NSF Grant CCF-0843915. Elek [8] gives results similar to ours for bounded degree-

IOW?#BPO"EC‘ in part by NSF Award CCF-0832997 and an Akamai Fel-graphs of subexponential growth. Note that bounded-degree

§Supp0rted in part by a Symantec Research Fellowship, NSHtGra graphs with _an excluded m_mor Oﬂen_ do not have b_oundEd
0728645, and NSF Grant 0732334. growth. For instance, consider full binary trees, which are



an example of many popular minor-free classes of graphs.  Testing minor-closed propertieginother application of
They do not have(; as a minor; yet the number of vertices our techniques is to property testing in the bounded-degree
around each vertex grows exponentially fast. model [11]. We say that a graph propérig minor closed
Constant-time approximation algorithm&Ve say that if it is closed under removal of edges, removal of vertices,
an algorithm is an(«, 3)-approximation algorithmfor a  and edge contraction. Examples of minor-closed families of
value V(z) if on input z, it outputs V’(x) such that graphs include planar graphs, outerplanar graphs, grafphs o
Viz) < V'(z) < a-V(x) + @ with probability at least genus bounded by a constant, graphs of tree-width bounded
2/3. Moreover, for a given graph problem, we say that anby a constant, and series-parallel graphs.
(o, en)-approximation algorithm runs inonstant timef its In the case being considered, the goal ofcatester for
running time is bounded by a function efand the average a given minor-closed propertf is to distinguish, with
degreed (which we assume to be known to the algorithm). probability 2/3, graphs that satisff? from those that need
The line of research on constant-time approximationto have at leastn edges deleted to satis®, wheree > 0.
algorithms for graph problems was initiated by Par-Goldreich and Ron [11] showed an(1/e?) tester for the
nas and Ron [18], who showed a constant-tif®sn)-  property that the input graph is a forest, i.e., does not have
approximation algorithm for minimum vertex cover Kj as a minor. Until the breakthrough result of Benjamini,
and a constant-timgO(log d), en)-approximation algorithm Schramm, and Shapira [4], who showed that any minor-
for minimum dominating set. Later, Nguyen and Onakclosed property can be tested in constant time, this was the
[17] showed a constant-timél, en)-approximation algo- only minor-closed property that was known to be testable
rithm for maximum matching. Aloh showed a constant- in constant time. However, the running time of the tester
time (O(dlog log d/ log d), en)-approximation algorithm for o Benjamini, Schramm, and Shapirad®”, and the

maximum independent set. The running times of some ofnajysis is quite involved. We give a simple proof of their
the above algorithms were improved by Marko and Ronegyit and present a tester that run2m (/=) time.

[16], and by Yoshida, Yamamoto, and Ito [22]. On the
negative side, Trevisan [18] showed that for ahy> 0,

a (2 — d,en)-approximation algorithm for vertex cover
has to makeQ(y/n) queries to the graph. Alon showed
that there is no constant-tim@(log d), en)-approximation
algorithm for minimum dominating set, and no constant-time
(o(d/log d),en)-approximation algorithm for maximum in-

Approximation of distance to hereditary propertieA:

graph property ishereditaryif it is closed under removal
of vertices. Many natural graph families are hereditary,
including all minor-closed graph families, perfect graphs
bipartite graphsk-colorable graphs, graphs with an excluded
induced subgraph (see the appendix of [6] for a longer list
of hereditary properties). All those properties are knoven b
dependent set. _ _ testable in constant time for dense graphs in the adjacency

Elek [8] proved the existence of constant-tiigen)-  yatrix model even withone-sided error[2], i.e., a graph
approximation _algonthms for minimum vertex cover, min- having a given property cannot be rejected. This is not
imum dominating set, and maximum independent set fOfq case in the bounded-degree model. For instance, testing
bounded-degree graphs of subexponential growth. His papgfiyaiteness required(,/n) queries [11], and testing three-
does not provide any explicit bounds on the running time. colorability requires2(n) queries [5]. Motivated by these

In this paper, we show that the above lower bounds cafy, yer hounds, Czumaj, Shapira, and Sohler [6] turned to
be overcome for any bounded-degree hyperfinite class Abgting properties of specific bounded-degree non-expandi

graphs. In fact, this is true for a slightly larger family of ¢ mjjies of graphs, which include minor-closed families
graph classes with boundederagedegree, which includes graphs. For those graphs, they showed that all hered-

any class of (unbounded degree) graphs with an excludeghry properties are testable in constant-time (with one-

minor. More precisely, for any such class of graphs, thergijeq error). Their proof holds for any hyperfinite family
are constant-timél, en)-approximation algorithms for min- bounded-degree graphs.
imum vertex cover, minimum dominating set, and maximum We say that a hereditary propef/is degeneratéf there
independent set. For any class of graphs with an excludeg an empty graph on some number of vertices that does
minor, the running time of our algorithms %:O)lyu/g)' Note o haveP. For every non-degenerate hereditd?y every
. . . . . o(1) . . .

that finding algorithms of running t'mE(,l/E) is unlikely,  pyperfinite clas of bounded-degree graphs, and every
since by setting = 1/(3n), this would yield subexponential " ne can additively approximate the number of edges that
randomized algorithms for NP-hard problems. The abo‘_"°must be modified (i.e., inserted or removed) upzto to
three problems are NP-hard for planar graphs, even withychievep in time independent of the graph size for graphs
degree bounded by 3 [9], [10]. in C. It is impossible to specify the running time even for a

IFrom now on, whenever we say “an approximation algorithm for fixed class of graphs, sind@ need not even be computable.
problem A”, we mean “an approximation algorithm for the size of the

optimal solution toA”. 3In this paper, all graph properties are defined for graphk wii labels
2The results of Noga Alon will appear in a joint journal versiaith [17]. and are therefore closed under permutation of vertices.



Nevertheless, if a non-degenergfe can be specified via algorithm can construct a good solution in a constant number
a (potentially infinite) set of forbiddesonnectedinduced of communication rounds.
graphs, and there is &fi(n)-time algorithm that checks if Our partitioning oracle, which provides query access
a graph onn vertices haspP, then one can show that the to a partition of vertices, can also be simulated locally.
distance taP to can be approximated in any fixed bounded-We collect a constant size neighborhood and the random
degree class of graphs with an excluded minaipy(1/¢) . numbers assigned to it. Simulating the oracle’s computatio
T(poly(1/¢)) time. for sufficiently many rounds, we assign a partition to most
The reason behind excluding degenerate hereditary promf the nodes, and those that we do not succeed for in the
erties is the following. Every degeneraf® excludes an given time limit, create their own parts. This modification
empty graph onk vertices, for some constarit, which  cuts additional edges, but their number is small as long as
implies that if a graph hasP, then it does not have an the number of nodes for which simulation does not succeed
independent set of size, and therefore, ha®Q(n?) edges. is small. Such a partition can be used to compute a good
Since the input graph ha®(n) edges, a large number of approximate solution to many combinatorial problems, in a
edges must be inserted. On the contrary, for every nonmanner similar to our constant-time algorithms.
degenerate hereditary property, the distance to the pipper Lenzen, Oswald, and Wattenhofer [13] gave a local
is always of ordeO(n), since it suffices to remove all edges multiplicative O(1)-approximation algorithm for minimum
to achieve the property. dominating set. Our techniques yield a distributed altomit
A sample application of our result is d1,en)-  that computes an additiveeen approximation in constant
approximation algorithm for the number of edges that mustime, for anye > 0. It is an interesting question if our
be removed from the input bounded-degree planar graptechniques can be combined with theirs to give a local
to make it3-colorable. The running time of the algorithm (1 + ¢)-approximation algorithm for this problem.
can be mader°¥(1/¢) The result of Czumagt al. only

guarantees the existence of a constant-time algorithnighat 2. PRELIMINARIES

planar bounded-degree graphs, can Betiolorable graphs Model: We assume that an algorithm is given the
from those that need to have at leastedges removed, for number of vertices, and can uniformly sample from the set
everye > 0. of vertices inO(1) time. The paper uses thmunded-degree

Elek [8] proved the existence of constant-time approxima-smodel introduced by Goldreich and Ron [11]. In this model,
tion algorithms for distance approximation to union-cibse the degrees of all vertices are boundeddy O(1), and
monotone properties in bounded-degree graphs of subexhe algorithm has query access to the adjacency list of each
ponential growth. Even though a union-closed monotonevertex. In this paper we assume that we can read a single
property need not be hereditary, all natural union-closedadjacency list inO(d) time.
monotone properties are heredithryOn the other hand, Some of our approximation algorithms also work for
perfectness is hereditary, but is not monotone. graphs with boundedveragedegree. We use to denote

For general bounded-degree graphs, Marko and Ron [1& bound on the average degree of a graph. In this case, we
give a constant-timéO(1), ¢)-approximation algorithm for assume that an algorithm can learn the degree of a given
the distance toff-freeness, wherd? is an arbitrary fixed vertex in O(1) time, and that it can read the adjacency
graph. They also show a constant-tifiec)-approximation list of a given vertex in time proportional to the number
algorithm for the distance to cycle-freeness. of neighbors.

Local distributed approximation algorithmsA dis- Partitions: We say thatP is apartition of a setS if it is
tributed algorithm islocal if it runs in a number of rounds a family of nonempty subsets of such thal ., X = 5,
that is independent of the size of the underlying graph. Theand for all X, Y € P eitherX =Y or X NY = 0. We
first paper on constant-time graph approximation algorghm write P[q] to denote the set i that contains an element
due to Parnas and Ron [18] was based on the observation that S.
given a local distributed algorithms for finding a solutianat Uniformity and Non-Uniformity:Throughout the paper,
graph problem, the size of the solution can be approximatedie call a testers, an approximation algorithm, or an oracle
by sampling a small number of vertices in the graph, ancuniformif it takes e, the approximation parameter, as input.
simulating the distributed algorithm on their neighbortloo Otherwise, we call ihon-uniform
On the other hand, Nguyen and Onak [17] noticed that Graph Minors: A graph H is a minor of a graphg,
an oracle for a large matching, which they designed for &@f H can be obtained front; by vertex removals, edges
constant-time algorithm, can be simulated for most nodegsemovals, and edge contractions. A graphfsminor free
on a bounded radius neighborhood. Therefore, a distributefl it does not haveH as a minor. A graph propertf is

4 . . _ minor-closedif for every graphG € P, every minor ofG

If a union-closed monotone property is closed under rengpwvam
isolated vertex, then it is hereditary. All union-closed mtone properties also belongs toP. The RObertson'Seymour theorem [21]
listed by Elek [8] are hereditary and non-degenerate. says that every minor-closed property can be expressed via



a constant number of excluded minors. Moreover, Robertsoqueries to the oracle. With probability — §, the oracle
and Seymour [20] showed that for every mini, there is  makes ¢ - 9d©(p(e?/54000) queries to the input graph, and
a deterministicO(n?)-time algorithm for checking iff/ is  the total amount of the oracle’s computation Jdog ¢ -
present in the input graph. (O (p(e3 /54000))

Lemma 2 (Proposition 4.1 in [1])For every graphH, .

. . . By combining the above oracle with with Corollary 3
there exists a constarify such that ifG is an n-vertex Y g Y

one can achieve explicit bounds for any class of graphs

H-minor free graph, then there exists a setof at most ith luded mi Th d b f X
Cy - n/\/t vertices of G such that removing vertices of with an excluded minor. The expected number of queries
H of an (ed, Cy /£%)-partitioning oracle to the input graph is

S leaves no connected component on more tharodes  _ oq,.5)
(t > 1). 2 for every query to the oracle. We show a more

Corollary 3: Let H be a fixed graph. There exists a efficient oracle for bounded-degrgéhyperfinite graphs with

constantCy > 1 such that for every € (0,1), every /-  Pounded function.

minor free graph with degree boundeddig (cdn, C2, /£2)- Lemma 6:Let R : R? — R be a polynomial. LeC be
hyperfinite. a class of graphs such that, for evetye N,, and every

Proof: Sett in Lemma 2 t0oC% /2 > 1. One can € € (0,1), C|a is (¢, R(d, €))-hyperfinite. There is a uniform

remove from(; at mosten vertices so that each remaining Partitioning oracle that take$ < Z,. ande € (0,1) as input

connected component has at mag}, /<2 vertices. Since and acts as afe, poly(1/¢, d))-partitioning oracle forC|g.
the degree of each vertex ifi is bounded by, it suffices Let ¢ be the number of queries to the oracle. The oracle

to remove fromG the edges incident to those vertices to Makesq - 27 (& gueries to the input graph i‘?}?y(tahg total
achieve the same property. The number of these edges is &f10unt of the oracle’s computation (glog g) - 27°%'=.

mostedn. - We omit the full proof of the above lemma in this version
Notation: We write VC(G) to denote the minimum of the paper. We give a sketch of our techniques in Section 4.
vertex cover size for a grap@. 3.1. Constant-Time Approximation Algorithms

Let G be a graph. We write7|;,, ¥ € N to denoteG
without the edges that are incident to vertices of degrer%0
higher thank in G. For a class of graphg, we define:

We first describe an application of partitioning oracles
approximating the size of an optimal solution for com-
binatorial problems on restricted classes of graphs. As an
Cly ={G|x: G €C}. example, consider the minimum vertex cover problem for
planar graphs. We show that &n, poly(1/¢))-partitioning
oracle for planar graphs of degré&(1/=) can be used to
3. LOCAL PARTITIONS AND THEIR APPLICATIONS partition the input graph into components of sjzdy(1/¢).

We now define the main tool that is used in the paper. alhe union of optimal vertex covers over all connected
partitioning oracle provides query access to a global gianti  COMPonents constitutes a set of size witiiMen) of the
of the graph into. minimum vertex cover size of the original graph. By sam-

Definition 4: We say that) is an(c,k)-partitioning oracle ~ Pling O(1/?) vertices and checking for each of them if
for a classC of graphs if given query access to a graph!t belongs to the optimal vertex cover for the_lr component,
G = (V,E) in the adjacency-list model, it provides query W& 9€t _a(l,O(an))-gpproxmatlon to the minimum vertex
access to a partitio® of V. For a query about € V, ©  COVer size of the original graph. .
returns P[v]. The partition has the following properties: A formal lemma and proof follow. To achieve a good

. P is a function of the graph and random bits of the approximation, a bound on the average degree is needed.

oracle. In particular, it does not depend on the order oiNOte that every class of graphs with an excluded minor has
queries t00. average degree bounded by a constant.

. Lemma 7:Let C be a class of graphs with average degree
o For everyv € V, |P[v]| < k and P[v] induces a - o
connected graph it bounded byd. Let= > 0. Let O be an(e/3, k)-partitioning

. If G belongs toC, then |{(v,w) € E : Pl] # olracl_eir:or ;heﬂasglgg/g.There;s a(l,sn)-gpprommanon A
Plu]}| < £[V| with probability 9,10, algorithm for the minimum vertex cover size in any grap

. . .. G=(V,E) in C. The algorithm
The most important property of our oracle is that with .
high probability, it can compute answers in time independen ° givesO quergl acgess to the grapih|3d~/5, ]
of the graph size by using only local computation. We prove * makesOOk(l/sQ ) umfgrmlgl distributed queries t®,
the following lemma for any class of hyperfinite graphs. A US€S2 *)/e* + O(dk/=*) time for computation.

relatively simple proof appears in Section 4. The same holds for the maximum independent set problem,
Lemma 5:Let G be an(e, p(¢))-hyperfinite graph with ~and the minimum dominating set problem.
degree bounded by > 2. There is an(ed, p(¢® /54000))- Proof: All edges from G missing in G|,;,. can be

partitioning oracle. Lety be the number of non-adaptive covered by vertices of degree greater tisatic in G. We



write G" = (V, E') to denoteG|,;,.. Note that the number

of such vertices is by Markov’s inequality at most/3.
Therefore, we have

VC(G) — en/3 < VC(G') < VC(G).

Each query about the adjacency list of a vertein G’
can easily be computed if(3d/¢) time. If the degree of
is greater thard/c in G, thenw is an isolated vertex i’
Otherwise, we go over the neighbors ©fin GG, and each
neighborw in G stays a neighbor i’ if and only if w

has degree greater thad/s in G. We giveO query access
to G’. With probability9/10, O provides query access to a

partition P such that the number of edgés w) € E’ with
P[v] # Plw] is at mostn /3. LetG” = (V, E”) be G’ with
those edges removed. Since they can be coveredawith

Algorithm 1: Tester for H-Minor Freeness (for suffi-
ciently large graphs)

Input: query access to a partitioR given by an
(ed/4, k)-partitioning oracle forH-minor free
graphs with degree bounded kyfor the input
graph

1 f:=0

2for j=1,...,t1 =0(1/?) do

3 Pick a randomy € V' and a randomi € [d]

4 if v has> i neighbors, and the-th neighbor ofv
not in Pfv] then f:= f +1

5 if f/t1 > 3¢ then REJECT

6 Select independently at random a $ebf ¢, = O(1/¢)

vertices of the graph
7 if the graph induced byJ, . P[z] is not H-minor free

then REJECT
g else ACCEPT

vertices, we have

VCO(G') — en/3 < VC(G") < VC(G'),

that is,
3.2. Testing Minor-Closed Properties

i
VC(G) = 2en/3 < VO(GT) = VC(G), We now describe how partitioning oracles can be used

for testing if a bounded-degree graph has a minor-closed
property. The constant-time testability of minor-closedpp
erties was first established by Benjamini, Schramm, and

To get a(1,en)-approximation toVC(G), it suffices to
estimateVC(G”) up to +en/6. By the Chernoff bound,
we achieve that with probability/10 by samplingO(1/?) _
vertices and computing the fraction of them in a fixed Shapira [4].
minimum vertex cover of5”. Such a vertex cover can be ~We now recall the definition oproperty testingin the
obtained by computing a minimum vertex cover for eachPounded degree model [11]. A graph is e-far from a
connected component @’ independently. Therefore, for PropertyP if it must undergo at leastdn graph operations
every vertexv in the sample, we obtai[v] from ©. We 1o satisfyP, where a single graph operation is either an edge
compute a minimum vertex cover for the component inducedemoval or an edge insertion. AntesterT’ for property’P
by P[v] in such a way that the vertex cover does not depends & randomized algorithm that has query access ia the
on which vertex inP[v] was the query point. Finally, we Sense defined in the preliminaries, and:
check if the query point belongs to the computed vertex . if G satisfiesP, T' accepts with probability at leagf/3,
cover for the component. In total, our procedure takes at « if G is e-far from P, T rejects with probability at least
mostO (k- d/e?) +2°9%) /&2 time. 2/3.
To prove the same statement for maximum independent | emma 9:Let H be a fixed graph. LeD be an(zd/4, k)-
set, it suffices to notice that removing edges incident to thgyartitioning oracle for the class df-minor free graphs with
high degree vertices increases the maximum independent sgégree bounded by. There is are-tester for the property
by at mosten/3. For minimum dominating set, we assume of peing H-minor free in the bounded-degree model that
that all the high degree nodes are in the dominating Se%rovides@ with query access to the input graph, makes
and we take this into account when we compute optimal) (1 /z2) uniform queries ta0, and use®)(dk /e +k3 /5) =
solutions for each connected componentin the partitiors Th 1,1y (4, &, 1/¢) time for computation.
can only increase the solution size biy/3. u Proof: Our tester is Algorithm 1. The valug equals
We now use the already recalled fact that the averagey, /-2 for a sufficiently high constant’; such that by the
degree of a graph with an excluded minor @§1). We  Chernoff bound the number of edges cut by the partition
combine Lemma 6 and Lemma 7, and achieve the followings approximated up tatedn/8 with probability 9/10. Let
corollary. ts = C/e be an upper bound on the expected time to hit a
Corollary 8: For every H-minor free family of graphs set of sizez| X|/2 by independently taking random samples
(with no restriction on the maximum degree), there arefrom X, whereC, is a sufficiently large constant. We set
(1,en)-approximation algorithms for the optimal solution ¢, in the algorithm to10 - ¢ - t5, whereq is the number of
size for minimum vertex cover, maximum independent setconnected components iff. Finally, we sett, to Cs - k - 3

and minimum dominating set that run #t°'v(/<) time. for a sufficiently high constant’s such that for graphs on



more than, nodes, the probability that two samples frém  Algorithm 2: Approximating distance to not having a
belong to the same componeRifv] is at mostl/10. If the set of connected graphs as induced subgraphs

number of vertices in the graph is at mest= O(k/<?), we Input: setH of connected graphs (does not include the
read the entire graph, and check if the inputisminor free graph on one vertex)
in O((k/£?)*) time. For larger graphs, we run Algorithm 1. |nput: query access to a partitioR given by an
If G is H-minor free, then the fraction of edges cut by (ed/4, k)-partitioning oracle for a clas€ of
P is with probability 1 — 1/10 at mostedn/4. If this is graphs

the case, the estimate on the number of broken edges that r .—

is computed by tester is at mo8tdn/8 with probability  , for j =1,... ¢t = 0(1/2) do

1 — 1/10. Moreover, every induced subgraph 6fis also 3 | Pick a randomv € V

H-minor free, soG cannot be rejected in the loop inLine 5 , | ;.= the minimum number of edge operations to
of the algorithm. Hence(s is accepted with probability at make the graph induced b§[v] have no graph in

leasts/10 > 2/3. H as an induced subgraph
Consider now the case whef is e-far. If the partition fi=f+ ﬁ

P cuts more tharedn/2 edges, the graph is rejected with
probability 1 — 1/10. We therefore assume in Steps 6-8 that® Returnf/t +</2.
P cuts less thaadn /2 edges. Leti’ be the new graph after
the partition.G’ remainse /2-far from H-minor freeness, and
there are at leastin/2 edges that must be removed to get an
H-minor free graph. This implies that’ is £ /2-far from H;-
minor freeness also for every connected compoiigntl <

1 < g, of H. For everyi, at least are/2-fraction of nodes
belong to a component that is n&t-minor free. Therefore,

it suffices to pick in expectations random nodes to find
a component that is nok;-minor free. Forq connected
components off, it suffices to pick in expectation - ¢3

distance of the input tdP with probability 2/3. In the
following, we study constant-timél, ¢)-distance approxi-
mation algorithmawith § being a parameter. Such algorithms
immediately yield constant-timés;, e2)-tolerant testers by
settingd to (e2 —£1)/2.

In the bounded-degree model, tliéstanceto a given
property P is k/(dn), where k is the minimum number

random nodes to find each of them. By pickirig) - - of graph operations (edge insertions and deletions) treat ar

ts random nodes, we find the components with probabiIitynee‘jed to make the graph achig¥eAll input graphs have

1 — 1/10. Furthermore, since the considered graph is largel '€ Maximum degree bounded by but the closest graph

ie., has at least, nodes, the components for eagrare It Property’> need not have the degree boundeddby
different with probabilityl —1/10, and the graph is rejected  Lémma 11:Let 7 be a fixed set of connected graphs

in Step 7. Therefore, the probability that a graph thatfar ~ that does not contain the 1-vertex graph. l@tbe an
is accepted is at mosy/10 < 1/3. m (ed/4,k)-partitioning oracle for a clas§ of graphs with
By combining Lemma 6 with Lemma 9, we obtain a degree bounded hy, wherek is a function of onlyz. There
9poly(1/2)_time tester for H-minor freeness for graphs of is a (175)—approxim_ation algorithm_ for the d_istance to the
degree O(1). Since every minor-closed property can be Property of not having any graph i as an induced sub-
expressed via a finite set of excluded mindis[21], it ~ 9raph, for graphsie. The algorithm p;owdeé) with query
suffices to test if the input is/s-far from being minor free  2CCeSs to the input graph, mak@gl/=*) random uniformly

. . . 2 .
for each of them, where is their number. We arrive at the distributed queries t@®, and use$O(dk)+2°%")) /e time

following theorem. for computation. _ B

Theorem 10:For every minor-closed properfy, there is Proof: We use Algorithm 2. The partitiorP cuts at
a uniforme-tester forP in the bounded-degree model that mostedn/4 edges with probability —1/10, which implies
runs in2roly(1/¢) time. that the distance to the property changes by at most.

Consider the new grapldé:’ with connected components

3.3. Approximating Distance to Hereditary Properties For corresponding to the partition d?. Every graph inH € H
Hyperfinite Graphs is connected, s#/ can only appear as an induced subgraph

Parnas, Ron, and Rubinfeld [19] studied generalization®f a connected component@&f. Therefore, it does not make
of property testing:tolerant testingand distance approx- Sense to add edges connecting componens of his would
imation For a given propertyP, and an appropriately not exclude any existing induced graph fréin Hence, any
defined distance t®, an (¢, e5)-tolerant testerfor P tells ~ shortest sequence of operations that removes fédnall
apart inputs at distance at mast from P and those at induced copies of graphs i, does this over each connected
distance at least, from P with probability at least2/3,  component inG’ separately.
where 0 < e; < e2. An (o, 3)-distance approximation The valuet = O(1/¢?) in the algorithm is chosen such
algorithm for P computes an«, 5)-approximation to the that we estimate the number of edge operations divided by



dn up to +¢/4 with probability 1 — 1/10 by the Chernoff set almost entirely for sufficiently large graphs, unless we
bound. Therefore, the algorithm returns a correct estimatsvant to conduct a long sequence of operations. For every
with probability at leastl — 1/10 — 1/10 = 4/5. The best present configuratiom € {0,1}* (the number of them is
set of edge operations can be found for a single componefinite), we fix an arbitrary graptf. € H' with this config-
in 200+*) time by enumerating all possible modifications, uration. Consider any sequence of at m@sf — ¢/4) - dn
and verifying that none of the graphs # on at mostk  operations that turn&”’ into a graphG”. We will show that
nodes are present as an induced subgraph. m for n greater than some constant (which depends o,
Lemma 12:Let P be a non-degenerate hereditary prop-k, andP), G’ has an induced copy of one of the graphs
erty. Let O be an(ed/16, k)-partitioning oracle for a class H.. Let G, be G” with only edges that connect vertices in
C of graphs with degree bounded ly There is a (non- the same connected componentGf By the definition of
uniform) (1, ¢)-approximation algorithm for the distance to M, G, must bes/4-far from having any of the hitting sets
‘P for graphs inC. The algorithm providesD with query  excluded. We claim that there is a present configuration
access to the input graph, and makes a constant number sfich that for every non-triviali; with ¢; = 1, the distance
uniformly distributed queries to the oracle. Its runningéi  of G, to not havingA; as an induced subgraph is at least
is independent of the graph size. e/(8k2%). Suppose for contradiction that for every present
Proof: The proof reuses some ideas of Czumaj, Shapiraconfiguratione, there isi such that4; is a non-trivial graph,
and Sohler [6], who showed a one-sided tester for hereditary; = 1, and the distance of/, from not havingA; as an
properties of hyperfinite classes of bounded-degree graphsnduced subgraph is less thari(8k2!). For every present
Let H be the set of all graphs that do not have Since  configuratione, removing such am; from G, requires a
P is hereditary, if a graph has any of the graphsHnas sequence of fewer thandn/(8k2") graph operations. For
an induced subgraph, it does not h&veConsider a subset every inserted or deleted edde,v) by such an sequence
H' of H that only consists of graphH € H that have all of operations, let us delete fro¥, all edges incident to

components of size at mokt There are at mogt= 20(+*) bothw andv. This is fewer tharedn/(4-2") graph deletions
different connected graphs,, ..., A; on at mostk vertices.  for every present configuration and this way we do not
Every graph in}’ can be represented as a vectoe N, introduce any new connected induced subgraph. By going

wherea; is the number of timesl; appears as a connected over all present configurations, we can entirely remove all
component. For a grapfl € H’, its configurationis the induced copies of at least one graph in each configuration
vectorc € {0, 1}! such that for each, 1 <i <t, ¢; =0 if with fewer thanedn/4 graph deletions. This implies that
and only ifa; = 0. We say that a configuratione {0,1}*  we can exclude a hitting set with fewer thadn/4 graph
is presentif there is a graph inH’ with configurationc. operations. This yields a contradiction.
We call the one-vertex graptnivial. Recall thatH is non- We proved that there is a present configuratiosuch
degenerate. This implies that for each present configuratiothat for every: such thatc; = 1 and A; is non-trivial, the
¢, there isi such that; = 1, and A; is non-trivial. A subset distance ofz, to not having4; as an induced subgraph is at
X of A={A;:1 <<t} ishitting if it does not contain leasts/(8%k2"). Note that because each connected component
the trivial graph, and for every present configuratigthere  in G, has at mosk vertices, the number of vertex disjoint
is j such thatc; = 1 and A; € X. For non-degenerat®,  copies of H, is €. q1(n) in G,. Let ¢ be the number of
there always exists at least one hitting subsetlof connected components if.. We can pick setd;, 1 <i <
Since there exists &d/16, k)-partitioning oracle for the ¢, of subgraphs ofG, such that each;, 1 < i < ¢, is
input graphG, G is (ed/16, k)-hyperfinite, and there is a a set of induced copies of theth connected component
graph G’ with components of size at moét that can be of H., |I;| > |n/C] (whereC only depends or, d, k,
created by removing at mostln/16 edges fromG. G’ is  and the choice of graphH.), and the graphs iy}, I; are
at distance at most/16 from G. The distance ofG’ to  pairwise vertex disjoint. Note that each induced subgraph
P is bounded from above by the minimum distance fromof G, that appears ir/; is also an induced graph i6".
having no induced subgraph iti, whereX’ is taken over all There are at leastn/C|? ways of selecting one subgraph
hitting sets. If we exclude at least one connected componeritom eachl;. Consider one of such choices. If there were no
for every graph inH’, we get a graph that satisfid®d We  additional edges between the selected subgraphs, thisiwoul
write M to denote the above minimum distance to excludinggive us an induced copy dfl.. The total number of edges
a hitting set fromG’. Note that the shortest sequence ofin G is at most2dn, and each edge connects at most 2
operations that exclude a given hitting sétdoes not add subgraphs i J I;. This means that each edge can make at
edges between different connected components.éfhese  mostn?—2 choices of one subgraph from eaghnot give
edges do not remove any existing copy of a graphtin  an induced copy ofd.. For sufficiently largen, we have
Note that)M is bounded byl, since it suffices to remove all 2dn -n?2 < |n/C|4, and there is an induced copy 6&f..
edges inG’ to achieveP. Summarizing, for sufficiently large graphs, the distance of
We now claim that in fact, we have to exclude some hittingG’ to P is at leastM — /4.



Algorithm 3: The global partitioning algorithm with 4.2. The Oracle

parameters: and 4 We introduce an auxiliary definition of a small subsgt

1 (m,...,m) := random permutation of vertices of vertices that contains a specific node, and has a small
2 P:=10 number of outgoing edges relatively &
sfori=1,...,ndo Definition 14: Let G = (V, E') be a graph. For any subset
4 if m; still in the graphthen S C V, we write e¢(S) to denote the number of edges in
5 if there exists gk, 0)-isolated neighborhood of  F that have exactly one endpoint
m; in the remaining graphhen We say thatS C V is a (k, §)-isolated neighborhoodf
6 L S := this neighborhood v e Vifve S, the subgraph induced hy is connected,
ese |S| <k, andeg(S) < 4|S].
| §:={m} We now show that a random vertex has an isolated
neighborhood of required properties with high probability
9 Pi=PU {S_} . Lemma 15:Let G = (V, E) be ap(e)-hyperfinite graph
10 L remove vertices irs from the graph with degree bounded by, wherep(e) is a function fromR

toR,.LetG' = (V', E’) be a subgraph aff that is induced
by at leastn vertices. For any € (0, 1), the probability that
a random vertex i’ does not have &o(=25/1800),¢/30)-
Therefore, the distance @f to P is betweenM —5¢/16  isolated neighborhood it is at mosts/30.
and M +¢/16. Moreover,M is approximated up tate/16 Proof: Any induced subgraph off can still be parti-
by M’, which we define as the distance@fto entirely ex-  tioned into components of size at mggt) by removing at
cluding one of the hitting sets. Therefore, to get a suffitfen mosten edges. Sinc&’ has at leastn vertices, it is still
good approximation to the distance 6f to P, it suffices  (g/4, p(e))-hyperfinite for anys > 0, or equivalently, it is
to compute(1,en/4)-approximation toM’ for sufficiently (e, p(c - §))-hyperfinite for anys > 0.
large graphs. This can be done by using the algorithm of Therefore, there is a sét C E’ of at most(s2/1800)|V’|
Lemma 11 for all hitting sets, and amplifying the probakilit edges such that if all the edges & are removed, the
of its success in the standard way. For small graphs, we hargrumber of vertices in each connected component is at most

wire the exact solution to the problem. B p(c?6/1800). Denote the achieved partition of vertices into
connected components ky. We have
4. A SIMPLE PARTITIONING ORACLE eq(P[v]) IS ec(S) 28 &2
By [t -5~ 2 02) _ 2o < £
PRI ]~ & v IS VT 900

4.1. Local Computation

We reuse a general method for local computation that wa%I,3 yeM‘a/r/k?g/ SSJgﬁqtjhﬂltgé Pt[r; T) /p|>]r30[1t})ﬁ1 b|I>|ty ithai\; Zt r?nnodsct)m
introduced by Nguyen and Onak [17]. Consider a graph with 30

. ) 9 y
random numbers iff0, 1] assigned to its vertices. Suppose 6/30' Otherwise, Plv] is an (p("0/1800), ¢/30)-isolated

o : ; neighborhood of. ]
that to compute a specific functighof a vertexv, you first Finally, we now use the above lemma to construct a par-
need to compute recursively the same function for neighborﬁtionin (’)racle
of v that were assigned a smaller number than that dfhe 9 '

following lemma gives a bound on the expected number of Proof of Lemma 5: We setk = p(¢?/54000) and
wing a9 P 0 = ¢/30. Consider the global Algorithm 3 with these
vertices for whichf must be computed.

] B parameters. The algorithm partitions the vertices of tipaiin
Lemma 13 ([17], proof of Lemma 12)et G = (V, E) graph into sets of size at most We define a sequence
be a graph of degree bounded By > 2, and letg : V- ot anqom variablesX,, 1 < i < n, as follows. X,
.(V.XA) — Abe afunctl_on. A rand(_)m numbe(v) € [0, 1] corresponds to theth vertex removed by Algorithm 3 from
is independently and uniformly assigned to each ventex

) . ; : . X the graph. Say, the remaining graph has ¢ vertices, and
G. A function f, : V — A is defined recursively, using. the algorithm is removing a sef of r vertices. Then we
For each vertex, we have

set Xy = ... = X4y = e (S)/r, where G’ is the

raph before the removal o§. Note that> ", X; equals

fr(w) = g(v. {(w, fr(w)) :r(w) <r(v)}). '?hepnumber of edges between different pza:rlt}@llrFor gvery

i, if X, corresponds to a sef that was a(k, ¢)-isolated

LetS C V be a set of vertices selected independently of neighborhood of the sampled vertex, th&h < § = £/30.

r, for which we want to learif,.(v). The expected number of Otherwise, we only know thaty; < d. However, by
verticesw for which we have to recursively compufe(w) Lemma 15, ifi < n — en/30, this does not happen with
in order to computef,.(v) for v € S is at most|S| - 29" probability greater tham/30. Therefore, we have for every



1 <n—en/30 Then, it removes these neighborhoods from the graph at once
and moves on to the next round.
E[Xi] <¢/30+d - /30 < 2ed/30 Since each neighborhood removed in rounanly de-
Fori > n — en/30, we again use the boundl; < 4.  Pends on the neighborhoods that were removed in previous

Together, this gives that the expected number of edges cofiounds, its dependency chain has length at miostf we
necting different parts of is at mostedn/30+edn/30 <  Pound the total number of rounds, then we also bound the

£dn,/10. Markov's inequality implies that the number of such Number of queries made by each vertex to locally compute
edges is at mostdn with probability 9/10. its partition. In order to bound the number of rounds, we

It remains to show how Algorithm 3 can be simulated show that in each round, the expected fraction of vertices
locally. For each vertex, we want to comput@®|[v]. Instead ~ rémoved is at leagtoly(e/d). Therefore, after @oly(d/c)
of a random permutation, we independently assign a randofiumber of rounds, the remaining graph has less thasy2
numberr(v) uniformly selected from the rangie, 1]. We edges Wlth high probabll!ty, and the algorithm can termgnat
only generate(v)'s when they are necessary, and we store 10 simulate the algorithm Ioca_lly, we observe tha.t each
them as they may be needed later again. The numbef@und can be simulated for a given vertexby learning
generate a random ordering of vertices. To compiie), the graph at the er_ld of the previous round within distance
we first recursively comput[w] for each vertexw with ~ Poly(d/e) from v. Since there are onlyoly(d/<) rounds, a
r(w) < r(v) and distance te at most2- k. If v € P[w] for ~ Vertexcan smulate the global algorithm by making at most
one of thosew, thenP[v] = P[w]. Otherwise, we search for d°°"(¥/<) queries to the input graph.
a(k, ¢)-isolated neighborhood af, keeping in mind that all
vertices in P[w] that we have recursively computed are no
longer in the graph. If we find such an neighborhood, we When trying to show that the expected fraction of vertices
set P[v] to it. Otherwise, we seP[v] = {v}. removed in each round isoly(e/d), it is easy to realize that

To bound the complexity of the oracle, we use Lemma 13the naive neighborhood growing algorithm will not work,
Our computation graph i€&* = (V, E*) where E* con-  since an exponential number of prospective neighborhood
nects all pairs of vertices that are at distance at mosean intersect locally. (In such an algorithm, each vertex
2 - k in the input graph. The degree @* is bounded queries all vertices within distancpoly(d/e), and uses
by D = dO(p(e°/54000))  The expected number of ver- brute-force search to find an isolated neighborhood of size
tices for which we have to comput@®[v] is at most poly(d/e).)
q- 2do(”(53/54000)). The query complexity at each vertex is Instead, we use the Volume-Biased Evolving Set Process
bounded byd©(r(*/54000) By Markov’s inequality, both (VBESP) due to Andersen and Peres [3] to grow a neigh-

the query complexity and the number of vertices visited ard’0rhood for each node. With a small modification to the
bounded by - 2do(p(s3/54000))/6 with probability 1 — § algorithm, we show a lemma similar to their Theorem 2:

. 5 3 3

The required isolated neighborhood of a vertex can easil)f L((;r;g)&; ?'560':;?;&4 r%ei‘g/h?)i;::))gg’ fl_h/éf’g |s2§033t6)§@§lc

. gOn(3 /54000)) . . . L. og - . C
be fo_und n2 time if it exists. An aqldltlonal A of size at least1 — ) A for which the following holds. If
cost in computation comes from the need to find-(b) v € Ar, then with probability at least — /60, we can find

was assigned before. By using a standard dictionary, thig, jq5|ateq neighborhoaf, will satisfy all the following:
can be done in time at most logarithmic in the number of _ ) )
1) S, is a(2k,e/30)-isolated neighborhood.

that were assigned. This gives an additional logarithmic
r(v) w ig is givi iti garithmi 2) 1S\ Al < ¢ - S,]/30 - d

factor in the time complexity. |
The neighborhoods grown by the VBESP have properties
5. AN EFFICIENT PARTITIONING ORACLE that allow for avoiding intersections of too many neighbor-

In this section, we sketch the ideas behind the partitionindi00ds at the same time. Also, the VBESP runs in near linear

oracle of Lemma 6. A detailed description is deferred to thelime, which is exponentially better than the naive aldonit
full version of the paper. We believe that the VBESP can be helpful for other constant-

time algorithms.

5.2. Growing Neighborhoods

5.1. The Partitioning Method

In order to locally simulate Algorithm 3, the simple oracle
of Section 4 has to compute the graph partition recursively The main open problem is whether there exists a parti-
for a large number of nodes. In particular, it may have totioning oracle with query or running time complexity that
follow long chains of dependencies. In the improved parti-is polynomial in1/e for graphs with an excluded minor.
tioning oracle, we try to avoid such expensive dependencied\n affirmative answer would imply apoly(1/e) tester
Our new global algorithm proceeds in a number of rounds. Irfor minor-closed properties in the bounded degree model,
each round, it finds a maximal set of disjoint neighborhoodssolving Open Problem 4 in [4].

6. OPENQUESTION
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