
Homework 5 (due 4/3)

DS-563 / CD-543 @ Boston University

Spring 2024

Before you start. . .

Collaboration policy: You may verbally collaborate on required homework problems, however, you must
write your solutions independently. If you choose to collaborate on a problem, you are allowed to discuss it
with at most three other students currently enrolled in the class.

The header of each assignment you submit must include the field “Collaborators:” with the names of
the students with whom you have had discussions concerning your solutions. A failure to list collaborators
may result in credit deduction.

You may use external resources such as textbooks, lecture notes, and videos to supplement your general
understanding of the course topics. You may use references such as books and online resources for well
known facts. However, you must always cite the source.

You may not look up answers to a homework assignment in the published literature or on the web. You
may not share written work with anyone else.

Submitting: Solutions should be submitted via Gradescope (entry code: 6G4V6G). Your solutions should
be typed. It is strongly suggested to use LATEX.

Grading: Whenever we ask for an algorithm (or bound), you may receive partial credit if the algorithm is
not sufficiently efficient (or the bound is not sufficiently tight).

Questions

Submit solutions to three (3) arbitrary questions out of Questions 1–4 and answer Question 5. (If you submit
answers to all of Questions 1–4, you may receive credit for an arbitrary subset of three of them.)

1. Let D1 and D2 be arbitrary discrete distributions on [n]. For each i ∈ [n], let pi and qi be the
probabilities of drawing i from D1 and D2, respectively. Let p = (p1, . . . , pn) and q = (q1, . . . , qn).
Hence, p and q are vectors in Rn.

For any subset S of [n], we write p(S) and q(S) to denote the total probabilities of elements in S
according to D1 and D2, respectively. That is, for any such S, p(S) =

∑
i∈S pi and q(S) =

∑
i∈S qi.

The total variation distance between D1 and D2 is defined as

dTV(D1,D2) = max
S⊆[n]

|p(S)− q(S)|

Prove that:

1

(a) dTV(D1,D2) = maxS⊆[n] (p(S)− q(S))

(b) dTV(D1,D2) = −minS⊆[n] (p(S)− q(S))

(c) dTV(D1,D2) =
1
2∥p− q∥1

2. Design a streaming algorithm that computes a large matching. Your input is a sequence of edges, each
consisting of two vertex identifiers. Vertex identifiers are single words. No deletions are allowed. Your
algorithm should compute a matching of size at least half the maximum matching size and should use
O(n) space, where n is the number of vertices.

3. Let G = (V,E) be a weighted graph that is presented as a stream edge by edge (with no deletions).
Compared to the previous question, each edge additionally has an associated positive integer, which
describes its weight. Let w1 < w2 < · · · < wk be possible weights of edges. We want to compute a
matching in which the total weight of edges is at least 1/4 times the maximum possible.

We write Ei to denote the subset of edges of weight wi and E≥i =
⋃k

j=iEj to denote the subset
of edges of weight at least wi. Let MCM(E′) for E′ ⊆ E be the size of the maximum cardinality
matching on E′, i.e., the maximum number of edges in a matching selected from E′ (note that we are
ignoring here edge weights!).

Consider the following streaming algorithm:

• Ignoring weights of edges, for each i ∈ [k], independently find a matching Mi of edges in E≥i

of size at least 1
2 MCM(E≥i). This can be achieved, using the algorithm from Question 2 with

total space O(kn).

• M ← ∅
• For j = k, k − 1, . . . , 1: add to M all edges in Mj that do not share an endpoint with any edge

in M .

• output M

Prove the following, where M is the final matching produced by the algorithm:

(a) For all i ∈ [k], |M ∩ E≥i| ≥ 1
4 MCM(E≥i).

Hint: What is the size of Mi? Consider the iteration in which edges in Mi are being added to M
(whenever possible). How many edges in Mi can a single edge already in M block from being
added?

(b) Let M⋆ be the matching of the maximum total weight of edges. Show a mapping from edges in
M⋆ to edges in M such that at most four edges in M⋆ are mapped to the same edge in M and
every edge is mapped to an edge of the same or higher weight.
Hint: Construct the mapping by induction. First map edges in M⋆ ∩ Ek to M ∩ E≥k, then map
edges in M⋆ ∩ Ek−1 to M ∩ E≥k−1, then map edges in M⋆ ∩ Ek−2 to M ∩ E≥k−2, and so on.
Can you get stuck at some point by not being able to map at most 4 edges in M⋆ ∩ E≥i to each
edge in M ∩ E≥i?

(c) Show that the total weight of M⋆ is at most 4 times the total weight of M .

(d) Explain why the total space used by the algorithm is O(kn).

2

Note 1: Suppose that all weights are integers in {1, . . . ,W}. Then a 4(1 + ϵ) approximation can be
computed in O(ϵ−1n logW) space by rounding all weights to powers of (1 + ϵ).

Note 2: This algorithm was discovered by two undergraduate students after a line of research that had
improved approximation constants from 6 to 4.911. More details on this after the homework is due.
The bottom line is “everyone can contribute.”

4. Recall the definition of the k–center clustering problem. For a given (multi)set S of points the goal is
to find a set Q of at most k points such that

max
x∈S

min
q∈Q

dist(x, q)

is as small as possible.

Let opt(S) be the cost of the optimal solution for this problem. A well–known simple greedy algo-
rithm1 for this problem computes a 2–approximation (i.e., finds a solution of cost at most 2 opt(S))
that is a subset of the input set. Let us denote the output of this algorithm as A(S).
Now, let your input (multi)set of points be S = S1 ∪ S2 ∪ . . .∪ Sk. Consider the following algorithm
that processes each Si independently before combining the results of the computation:

• For each i, compute Qi = A(Si).

• Return A(
⋃k

i=1Qi).

Prove that this algorithm produces a 4–approximation, i.e., finds a solution of cost at most 4 opt(S).

(Optional) Is this approximation factor optimal? Prove a better approximation guarantee or find a set
in an arbitrary metric space on which this algorithm fails to produce an approximation factor better
than 4.
Lecturer: I don’t actually know the answer to this question. Resolving it or even just showing
something interesting for an interesting set of metric spaces (vs. the general case) could be a good
final project.

5. How much time (approximately) did you spend on this homework? Was is too easy/too hard?

1It’s described for instance on the Wikipedia page for k–center clustering.

3

https://en.wikipedia.org/wiki/Metric_k-center#A_simple_greedy_algorithm

