
Streaming Algorithms via Precision Sampling∗

Alexandr Andoni†

Microsoft Research
Mountain View, CA, USA

andoni@microsoft.com

Robert Krauthgamer‡

Weizmann Institute of Sciences
Rehovot, Israel

robi@weizmann.ac.il

Krzysztof Onak§

CMU
Pittsburgh, PA, USA

konak@cs.cmu.edu

Abstract—A technique introduced by Indyk and Woodruff
(STOC 2005) has inspired several recent advances in data-stream
algorithms. We show that a number of these results follow eas-
ily from the application of a single probabilistic method called
Precision Sampling. Using this method, we obtain simple data-
stream algorithms that maintain a randomized sketch of an input
vector x = (x1, x2, . . . , xn), which is useful for the following
applications:

• Estimating theFk-moment ofx, for k > 2.
• Estimating theℓp-norm ofx, for p ∈ [1, 2], with small update

time.
• Estimating cascaded normsℓp(ℓq) for all p, q > 0.
• ℓ1 sampling, where the goal is to produce an elementi with

probability (approximately)|xi|/‖x‖1. It extends to similarly
definedℓp-sampling, forp ∈ [1, 2].

For all these applications the algorithm is essentially thesame:
scale the vectorx entry-wise by a well-chosen random vector, and
run a heavy-hitter estimation algorithm on the resulting vector. Our
sketch is a linear function ofx, thereby allowing general updates
to the vectorx.

Precision Sampling itself addresses the problem of estimating a
sum

Pn

i=1 ai from weak estimates of each realai ∈ [0, 1]. More
precisely, the estimator first chooses a desired precisionui ∈ (0, 1]
for each i ∈ [n], and then it receives an estimate of everyai

within additiveui. Its goal is to provide a good approximation to
P

ai while keeping a tab on the “approximation cost”
P

i
(1/ui).

Here we refine previous work (Andoni, Krauthgamer, and Onak,
FOCS 2010) which shows that as long as

P

ai = Ω(1), a good
multiplicative approximation can be achieved using total precision
of only O(n log n).

Keywords-streaming, sampling, moments, cascaded norms

1. INTRODUCTION

A number of recent developments in algorithms for data
streams have been inspired, at least in part, by a technique
devised by Indyk and Woodruff [21] to obtain near-optimal
space bounds for estimatingFk moments, fork > 2.
Indeed, refinements and modifications of that technique were
used for designing better or new algorithms for applications
such as:Fk moments [6] (with better bounds than [21]),

∗The full paper is available at http://arxiv.org/abs/1011.1263.
†Work done in part while the author was a postdoctoral researcher at

Princeton University/CCI, supported by NSF CCF 0832797.
‡Supported in part by The Israel Science Foundation (grant #452/08),

and by a Minerva grant.
§Supported in part by a Simons Postdoctoral Fellowship and NSF grants

0732334 and 0728645.

entropy estimation [5], cascaded norms [18], [23], Earth-
mover Distance [2],ℓ1 sampling algorithm [29], distance to
independence of two random variables [7], and even, more
generically, a characterization of “sketchable” functions of
frequencies [9]. While clearly very powerful, the Indyk-
Woodruff technique is somewhat technically involved, and
hence tends to be cumbersome to work with.

In this paper, we show an alternative design for the Indyk-
Woodruff technique, resulting in a simplified algorithm for
several of the above applications. Our key ingredient, dubbed
the Precision Sampling Lemma (PSL), is a probabilistic
method, concerned with estimating the sum of a number of
real quantities. The PSL was introduced in [3, Lemma 3.12],
in an unrelated context, ofquery-efficientalgorithms (in the
sense of property testing) for estimating the edit distance.

Our overall contribution here is providing a generic ap-
proach that leads to simplification and unification of a family
of data-stream algorithms. Along the way we obtain new
and improved bounds for some applications. We also give a
slightly improved version of the PSL.

In fact, all our algorithms comprise of the following two
simple steps: multiply the stream by well-chosen random
numbers (given by PSL), and then solve a certain heavy-
hitters problem. Interestingly, each of the two steps (sepa-
rately) either has connections to or is a well-studied problem
in the literature of data streams. Namely, our implementation
of the first step is somewhat similar toPriority Sampling
[16], as discussed in Section 1.3. The second step, the heavy-
hitters problem, is a natural streaming primitive, studied
at least since the work of Misra and Gries [28]. It would
be hard to list all the relevant literature for this problem
concisely; instead we refer the reader, for example, to
the survey by Muthukrishnan [30] and the CountMin wiki
site [13] and the references therein.

1.1. Streaming Applications

We now describe the relevant streaming applications in
detail. In most cases, the input is a vectorx ∈ R

n, which
we maintain under stream updates. An update has the form
(i, δ), which means thatδ ∈ R is added toxi, the ith

coordinate ofx.1 The goal is to maintain a sketch ofx of
small size (much smaller thann), such that, at the end of the
stream, the algorithm outputs some function ofx, depending
on the actual problem in mind. Besides the space usage,
another important complexity measure is the update time —
how much time it takes to modify the sketch to reflect an
update(i, δ).

We study the following problems.2 For all these problems,
the algorithm is essentially the same (see the beginning of
Section 3). All space bounds are in terms of words, each
havingO(log n) bits.

• Fk moment estimation, for k > 2: The goal is to
produce a(1+ ǫ) factor approximation to thek-th mo-
ment ofx, i.e.,‖x‖k

k =
∑n

i=1 |xi|k. The first sublinear-
space algorithm fork > 2, due to [1], gave a space
bound n1−1/k · (ǫ−1 log n)O(1), and further showed
the first polynomial lower bound fork sufficiently
large. A lower bound ofΩ(n1−2/k) was shown in
[10], [4], and it was (nearly) matched by Indyk and
Woodruff [21], who gave an algorithm using space
n1−2/k · (ǫ−1 log n)O(1). Further research reduced the
space bound to essentiallyO(n1−2/k · ǫ−2−4/k log2 n)
[6], [29] (see [29] for multi-pass bounds). Indepen-
dently of our work, this bound was improved by a
roughlyO(log n) factor in [8].
Our algorithm for this problem appears in Section 3.1,
and improves the space usage over these bounds. Very
recently, following the framework introduced here, [17]
reports a further improvement in space for a certain
regime of parameters.

• ℓp-norm estimation, for p ∈ [1,2]: The goal is to
produce a1 + ǫ factor approximation to‖x‖p, just like
in the previous problem.3 The casep = 2, i.e., ℓ2-
norm estimation was solved in [1], which gives a space
bound ofO(ǫ−2 log n). It was later shown in [20] how
to estimateℓp norm for all p ∈ (0, 2], using p-stable
distributions, inO(ǫ−2 log n) space. Further research
aimed to get a tight bound and to reduce the update
time (for small ǫ) from Ω(ǫ−2) to logO(1) n (or even
O(1) for p = 2), see, e.g., [31], [26], [27], [19] and
references therein.
Our algorithm for this problem appears in Section 3.2
for p = 1 and Section 4.1 for allp ∈ [1, 2]. The
algorithm has an improved update time, over that
of [19], for p ∈ (1, 2], and uses comparable space,

1We make a standard discretization assumption that all numbers have a
finite precision, and in particular,δ ∈ {−M,−M + 1, . . . , M − 1, M},
for M = nO(1).

2Since we work in the general update framework, we will not be
presenting the literature that is concerned with restricted types of updates,
such as positive updatesδ > 0.

3The difference in notation (p vs. k) is partly due to historical reasons:
the ℓp norm for p ∈ [1, 2] has been usually studied separately from the
Fk moment for k > 2, having generally involved somewhat different
techniques and space bounds.

O(ǫ−2−p log2 n). We note that, forp = 1, our space
bound is worse than that of [31]. Independently of our
work, fast space-optimal algorithms for allp ∈ (0, 2)
were recently obtained in [25].

• Mixed/cascaded norms:The input is a matrixx ∈
R

n×n, and the goal is to estimate theℓp(ℓq) norm,

defined as‖x‖p,q =
(

∑

i∈[n](
∑

j∈[n] |xi,j |q)p/q
)1/p

,
for p, q ≥ 0. Introduced in [15], this problem general-
izes theℓp-norm/Fk-moment estimation questions, and
for various values ofp and q, it has particular useful
interpretations, see [15] for examples. Perhaps the first
algorithm, applicable to some regime of parameters,
appeared in [18]. Further progress on the problem
was accomplished in [23], which obtains near-optimal
bounds for a large range of values ofp, q ≥ 0 (see
also [29] and [18]).
We give in Section 4.2 algorithms for all parameters
p, q > 0, and obtain bounds that are tight up to
(ǫ−1 log n)O(1) factors. In particular, we obtain the
first algorithm for the regimeq > p > 2 — no
such (efficient) algorithm was previously known. We
show that the space complexity is controlled by a
metric property, which is a generalization of thep-type
constantof ℓq. Our space bounds fall out directly from
bounds on this property.

• ℓp-sampling, for p ∈ [1,2]: Here, the goal of the
algorithm is to produce an indexi ∈ [n] sampled
from a distributionDx that depends onx, as opposed
to producing a fixed function ofx. In particular, the
(idealized) goal is to produce an indexi ∈ [n] where
each i is returned with probability|xi|p/‖x‖p

p. We
meet this goal in an approximate fashion: there exists
some approximating distributionD′

x on [n], where
D′

x(i) = (1± ǫ)|xi|/‖x‖1 ± 1/n2 (the exponent 2 here
is arbitrary), such that the algorithm outputsi drawn
from the distributionD′

x. Note that the problem would
be simple if the stream had only insertions (i.e.,δ ≥ 0
always); so the challenge is to be able to support both
positive and negative updates to the vectorx.
Theℓp-sampling problem was introduced in [29], where
it is shown that theℓp-sampling problem is a useful
building block for other streaming problems, including
cascaded norms, heavy hitters, and moment estimation.
The algorithm in [29] uses(ǫ−1 log n)O(1) space.
Our algorithm for theℓp-sampling problem, forp ∈
[1, 2], appears in the full paper. It improves the space to
O(ǫ−p log3 n). Very recently, following the framework
introduced here, [24] further improve the space bound
to a near-optimalbound, and extend the algorithm to
p ∈ [0, 1].

All our algorithms maintain a linear sketchL : R
n → R

S

(i.e., L is a linear function), whereS is the space bound (in
words, orO(S log n) in bits). Hence, all the updates may be

implemented using the linearity:L(x+ δei) = Lx+ δ ·Lei,
whereei is the ith standard basis vector.

1.2. Precision Sampling

We now describe the key primitive used in all our
algorithms, the Precision Sampling Lemma (PSL). It has
originally appeared in [3]. The present version is improvedin
two respects: it has better bounds and is streaming-friendly.

PSL addresses a variant of the standard sum estimation
problem, where the goal is to estimate the sumσ

def
=

∑

i ai

of n unknown quantitiesai ∈ [0, 1]. In the standard
sampling approach, one randomly samples a set of indices
I ⊂ [n], and uses theseai’s to compute an estimate such
as n

|I|

∑

i∈I ai. Precision samplingconsiders a different
scenario, where the estimation algorithm chooses a sequence
of precisionsui ∈ (0, 1] (without knowing theai’s), and then
obtains a sequence of estimatesâi that satisfy|âi−ai| ≤ ui,
and it has to report an estimate for the sumσ =

∑

i ai. As
it turns out from applications, producing an estimate with
additive errorui (for a singleai) incurs cost1/ui, hence the
goal is to achieve a good approximation toσ while keeping
tabs on the total cost (total precision)

∑

i(1/ui).4

To illustrate the concept, consider the case where10 ≤
σ ≤ 20, and one desires a1.1 multiplicative approximation
to σ. How should one choose the precisionsui? One ap-
proach is to employ the aforementioned sampling approach:
choose a random set of indicesI ⊂ [n] and assign to them
a high precision, sayui = 1/n, and assign trivial precision
ui = 1 to the rest of indices; then report the estimate
σ̂ = n

|I|

∑

i∈I âi. This way, the error due to the adversary’s
response is at mostn|I|

∑

i∈I |âi−ai| ≤ 1, and standard sam-
pling (concentration) bounds prescribe setting|I| = Θ(n).
The total precision becomesΘ(n · |I|) = Θ(n2), which is
no better than naively setting all precisionsui = 1/n, which
achieves total additive error1 using total precisionn2. Note
that in the restricted case where allai ≤ 40/n, the sampling
approach is better, because setting|I| = O(1) suffices;
however, in another restricted case where allai ∈ {0, 1},
the naive approach could fare better, if we set allui = 1/2.
Thus, total precisionO(n) is possible in both cases, but by
a different method. We previously proved in [3] that one can
always choosewi randomly such that

∑

wi ≤ O(n log n)
with constant probability.

In this paper, we provide a more efficient version of
PSL (see Section 2 for details). To state the lemma, we
need a definition that accommodates both additive and
multiplicative errors.

Definition 1.1 (Approximator). Let ρ > 0 and f ∈ [1, 2].
A (ρ, f)-approximatorto τ > 0 is any quantityτ̂ satisfying
τ/f − ρ ≤ τ̂ ≤ fτ + ρ. (Without loss of generality,̂τ ≥ 0.)

4Naturally, in other application, other notions of cost may make more
sense, and are worth investigating.

The following lemma is stated in a rather general form.
Due to historical reasons, the lemma refers to precisions as
wi ∈ [1,∞), which is identical to our description above
via wi = 1/ui. Upon first reading, it may be instructive to
consider the special casef = 1, and letρ = ǫ > 0 be an
absolute constant (say0.1 to match our discussion above).

Lemma 1.2 (Precision Sampling Lemma). Fix an integer
n ≥ 2, a multiplicative errorǫ ∈ [1/n, 1/3], and an additive
error ρ ∈ [1/n, 1]. Then there exist a distributionW on the
real interval [1,∞) and a reconstruction algorithmR, with
the following two properties.

• Accuracy: Consider arbitrarya1, . . . , an ∈ [0, 1] and
f ∈ [1, 1.5]. Let w1, . . . , wn be chosen at random from
W pairwise independently.5 Then with probability at
least 2/3, when algorithmR is given {wi}i∈[n] and
{âi}i∈[n] such that eacĥai is an arbitrary (1/wi, f)-
approximator ofai, it produceŝσ ≥ 0 which is a(ρ, f ·
eǫ)-approximator toσ

def
=

∑n
i=1 ai.

• Cost: There isk = O(1/ρǫ2) such that the conditional
expectationEw∈W [w | M] ≤ O(k log n) for some
eventM = M(w) occurring with high probability. For
every fixedα ∈ (0, 1), we haveEw∈W [wα] ≤ O(kα).
The distributionW = W(k) depends only onk.

We emphasize that the probability2/3 above is over the
choice of{wi}i∈[n] and holds (separately) for every fixed
setting of {ai}i∈[n]. In the case whereR is randomized,
the probability2/3 is also over the coins ofR. Note also
that the precisionswi are chosen without knowingai, but
the estimatorŝai are adversarial — each might depend on
the entire{ai}i∈[n] and{wi}i∈[n], and their errors might be
correlated.

In our implementation, it turns out that the reconstruction
algorithm uses onlŷai’s which are (retrospectively) good
approximation toai — namely âi ≫ 1/wi — hence the
adversarial effect is limited. For completeness, we also
mention that, fork = 1, the distributionW = W(1) is
simply1/u for a randomu ∈ [0, 1]. We present the complete
proof of the lemma in Section 2.

It is natural to ask whether the above lemma is tight. In
the full paper, we show a lower bound onEw∈W [w] in the
considered setting, which matches our PSL bound up to a
factor of 1/ǫ. We leave it as an open question what is the
best achievable bound for PSL.

1.3. Connection toPriority Sampling

We remark that (our implementation of) Precision Sam-
pling has some similarity toPriority Sampling[16], which
is a scheme for the following problem.6 We are given a
vector x ∈ R

n
+ of positive weights (coordinates), and we

5That is, for all i < j, the pair(wi, wj) is distributed asW2.
6The similarity is at the more technical level of applying thePSL in

streaming algorithms, hence the foregoing discussion actually refers to
Sections 2 and 3.

want to maintain a sample ofk weights in order to be
able to estimate sums of weights for an arbitrary subset
of coordinates, i.e.,

∑

i∈I xi for arbitrary setsI ⊆ [n].
Priority Sampling has been shown to attain an essentially
best possible variance for a sampling scheme [32].

The similarity between the two sampling schemes is the
following. In our main approach, similarly to the approach
in Priority Sampling, we take the vectorx ∈ R

n, and
consider a vectory where yi = xi/ui, for ui chosen at
random from[0, 1]. We are then interested in heavy hitters
of the vectory (in ℓ1 norm). We obtain these using the
CountSketch/CountMin sketch [11], [14]. In Priority Sam-
pling, one similarly extracts a set ofk heaviest coordinates
of y. However, one important difference is that in Priority
Sampling the weights (and updates) are positive, thus mak-
ing it possible to use Reservoir sampling-type techniques to
obtain the desired heavy hitters. In contrast, in our setting
the weights (and updates) may be negative, and we need
to extract the heavy hitters approximately and hence post-
process them differently.

See also [12] and the references therein for streaming-
friendly versions of Priority Sampling and other related
sampling procedures.

2. PROOF OF THEPRECISION SAMPLING LEMMA

In this section we prove the Precision Sampling Lemma
(Lemma 1.2). Compared to our previous version of PSL
from [3], this version has the following improvements: a
better bound onEw∈W [w] (hence better total precision), it
requires thewi’s to be only pairwise independent (hence
streaming-friendly), and a slightly simpler constructionand
analysis via its inverseu = 1/w. In the full paper we show
a lower bound for the total precision.

The probability distribution W . Fix k = ζ/ρǫ2 for
sufficiently large constantζ > 0. The distributionW takes
a random valuew ∈ [1,∞) as follows: pick i.i.d. samples
u1, . . . , uk from the uniform distributionU(0, 1), and set
w

def
= maxj∈[k] 1/uj. Note thatW depends onk only.

The reconstruction algorithms. The randomized recon-
struction algorithmR′ gets as input{wi}i∈[n] and{âi}i∈[n]

and works as follows. For eachi ∈ [n], samplek i.i.d.
random variables,ui,j ∈ U(0, 1) for j ∈ [k], conditioned
on the event{wi = maxj∈[k] 1/ui,j}. Now define the
“indicators” si,j ∈ {0, 1/k}, for eachi ∈ [n], j ∈ [k], by
setting

si,j
def
=

{

1/k if ui,j ≤ âi/t for t
def
= 4/ǫ;

0 otherwise.

Finally, algorithmR′ setss
def
=

∑

i∈[n],j∈[k] si,j and reports

σ̂
def
= s t as an estimate forσ =

∑

i ai. A key observation
is that altogether, i.e., when we consider both the coins
involved in the choice ofwi from W as well as those used

by algorithm R′, we can think ofui,1, . . . , ui,k as being
chosen i.i.d. fromU(0, 1). Observe also that wheneverâi

is a (1/wi, f)-approximator toai, it is also a (ui,j , f)-
approximator toai for all j ∈ [k].

We now build a more efficient deterministic algorithmR
that performs at least as well asR′. Specifically,R does not
generate theui,j ’s (from the givenwi’s), but rather setssi

def
=

E

[

∑

j∈[k] si,j | minj∈[k] ui,j = 1/wi

]

and s
def
=

∑

i∈[n] si.
A simple calculation yields an explicit formula, which is
easy to compute algorithmically:

si =

{

1
k + k−1

k · âiwi/t−1
wi−1 ; if âiwi/t ≥ 1

0 otherwise.

We proceed to the analysis of this construction. We will first
consider the randomized algorithmR′, and then show that
derandomization can only decrease the error.

Proof of Lemma 1.2: We first give bounds on the
moments of the distributionW. Indeed, recall that by
definition w

def
= maxj∈[k]

1
uj

. We define the eventM to be
thatw ≤ n5; note thatPr[M] ≥ 1− k ·n−5 ≥ 1−O(n−2).
Conditioned onM , eachuj ∈ U(n−5, 1), and we have

E

[

1
uj

]

= 1
1−n−5

∫ 1

n−5

1
x dx = ln(n5)

1−n−5 . Thus

Ew∈W [w | M] ≤ E

[

∑

j∈[k]
1
uj

| M
]

≤ O(k log n).

Now fix α ∈ (0, 1). It is immediate thatE [1/uα] =
O(1/(1 − α)). We can similarly prove thatEw∈W [wα] ≤
O(kα/(1 − α)), but the calculation is technical, and we
include its proof in Appendix A.

We now need to prove that̂σ is an approximator toσ,
with probability at least2/3. The plan is to first compute the
expectation ofsi,j , for eachi ∈ [n], j ∈ [k]. This expectation
depends on the approximator valuesâi, which itself may
depend (adversarially) onwi, so instead we give upper and
lower bounds on the expectationE [si,j] ≈ ai

tk . Then, we
wish to apply a concentration bound on the sum ofsi,j , but
again thesi,j might depend on the random valueswi, so we
actually apply the concentration bound on the upper/lower
bounds ofsi,j , and thereby derive bounds ons =

∑

si,j .
Formally, we define random variablessi,j , si,j ∈

{0, 1/k}. We setsi,j = 1/k iff ui,j ≤ fai/(t − 1), and0
otherwise. Similarly, we setsi,j = 1/k iff ui,j ≤ ai/f(t+1),
and0 otherwise. We now claim that

si,j ≤ si,j ≤ si,j . (1)

Indeed, if si,j = 1/k then ui,j ≤ âi/t, and hence, using
the fact thatâi is a (ui,j , f)-approximator toai, we have
ui,j ≤ fai/(t − 1), or si,j = 1/k. Similarly, if si,j = 0,
then ui,j > âi/t, and henceui,j > ai/f(t + 1), or si,j =
0. Notice for later use that each of{si,j} and {si,j} is a
collection ofnk pairwise independent random variables. For
ease of notation, definêσ = t

∑

i,j si,j and σ̂ = t
∑

i,j si,j ,
and observe that̂σ ≤ σ̂ ≤ σ̂.

We now boundE [si,j] andE
[

si,j

]

. For this, it suffices to
compute the probability thatsi,j and si,j are 1/k. For the
first quantity, we have:

Pr
[

si,j = 1
k

]

= Pr
[

ui,j ≤ fai

t−1

]

= fai

t−1 ≤ eǫ/2f · ai

t , (2)

where we used the fact thatt − 1 ≥ e−ǫ/2t. Similarly, for
the second quantity, we have:

Pr
[

si,j = 1
k

]

= Pr
[

ui,j ≤ ai

f(t+1)

]

= ai

f(t+1) ≥ e−ǫ/2f−1·ai

t .

(3)
Finally, using Eqn. (1) and the fact thatE [s] =

∑

i,j E [si,j], we can bound the expectation and variance of
σ̂ = st as follows:

e−ǫ/2f−1·σ ≤ t
∑

i,j

E
[

si,j

]

≤ E [σ̂] ≤ t
∑

i,j

E [si,j] ≤ eǫ/2f ·σ,

(4)
and, using pairwise independence,Var [σ̂],Var

[

σ̂
]

≤ t2 ·
∑

i,j k−2 ·eǫ/2 · fai

t ≤ 4tk−1σ. Recall that we want to bound
the probability that̂σ and σ̂ deviate (additively) from their
expectation by roughlyǫσ + ρ, which is larger than their
standard deviationO(

√
tk−1σ) = O(

√
ρǫσ).

Formally, to bound the quantitŷσ itself, we distinguish
two cases. First, considerσ > ρ/ǫ. Then for our parameters
k = ζ/ρǫ2 and t = 4/ǫ,

Pr
[

σ̂ > eǫ/2fσ · (1 + ǫ/2)
]

≤ Pr
[

σ̂ −E
[

σ̂
]

> ǫ/2 · eǫfσ
]

≤ Var[σ̂]
(ǫ/2·eǫfσ)2 ≤ 4tk−1σ

ǫ2σ2/4 ≤ O(ρ/ǫζ)
σ ≤ 0.1

for sufficiently large ζ. Similarly, Pr[σ̂ < f−1e−ǫ/2σ ·
e−ǫ/2] ≤ 0.1.

Now consider the second case, whenσ ≤ ρ/ǫ. It holds

Pr
[

σ̂ > feǫ/2σ + ρ
]

≤ Pr
[

σ̂ − E
[

σ̂
]

> ρ
]

≤ Var[σ̂]
ρ2 ≤ 4tk−1·ρ/ǫ

ρ2 ≤ 0.1.

Similarly, we havePr[σ̂ < f−1e−ǫ/2σ − ρ] ≤ 0.1. This
completes the proof that̂σ is a (ρ, feǫ)-approximator toσ,
with probability at least2/3.

Finally, we argue that switching to the deterministic
algorithm R only decreases the variances without affect-
ing the expectations, and hence the same concentration
bounds hold. Formally, denote our replacement forsi

by s′i = Eui,j

[

∑

j∈[k] si,j | maxj∈[k] 1/ui,j = wi

]

, and
note it is a random variable (because ofwi). Define
s′i = E

[

∑

j∈[k] si,j | maxj∈[k] 1/ui,j = wi

]

, and by apply-

ing conditional expectation to Eqn. (1), we havesi ≤ s′i.
We now wish to bound the variance of

∑

i s′i. By the law
of total variance, and using the shorthand~w = {wi}i,

Var [
∑

i si] = E [Var [
∑

i si | ~w]] + Var [E [
∑

i si | ~w]].
(5)

We now do a similar calculation for
∑

i s′i, but since each
s′i is completely determined from the known~w, the first
summand is just0 and in the second summand we can
change eachs′i to si, formally

Var [
∑

i s′i] = E [Var [
∑

i s′i | ~w]] + Var [E [
∑

i s′i | ~w]]

= Var [E [
∑

i si | ~w]]. (6)

Eqns. (5) and (6) imply that in the deterministic algorithm
the variance (of the upper bound) can indeed only decrease.
The analysis for the lower bound is analogous, usings′i. As
before, using the fact that thes′i are pairwise independent
(because thewi are) we apply Chebyshev’s inequality to
bound deviation for the algorithmR′s actual estimatêσ =
t
∑

i s′i.

3. APPLICATIONS I: WARM-UP

We now describe our streaming algorithms that use the
Precision Sampling Lemma (PSL) as the core primitive. We
first outline two generic procedures that are used by several
of our applications. The current description leaves some
parameters unspecified: they will be fixed by the particular
applications. These two procedures are also given in pseudo-
code as Alg. 1 and Alg. 2.

As previously mentioned, our sketch function is a linear
function L : R

n → R
S mapping an input vectorx ∈ R

n

into R
S , whereS is the space (in words). The algorithm is

simply a fusion of PSL with a heavy hitters algorithm [11],
[14]. We use a parameterp ≥ 1, which one should think of
as thep in the ℓp-norm estimation problem, andp = k in
theFk moment estimation. Other parameters are:ρ ∈ (0, 1)
(additive error),ǫ ∈ (0, 1/3) (multiplicative error), andm ∈
N (a factor in the space usage).

The sketching algorithm is as follows. We start by initial-
izing a vector ofwi’s using Lemma 1.2: specifically we draw
wi’s from W = W(k) for k = ζ

ρǫ2 . We usel = O(log n)
hash tables{Hj}j∈[l], each of sizem. For each hash table
Hj , choose a random hash functionhj : [n] → [m], and
Rademacher random variablesgj : [n] → {−1, +1}. Then
the sketchLx is obtained by repeating the following for
every hash tablej ∈ [l] and indexi ∈ [n]: hash index
i ∈ [n] to find its cellhj(i), and add to this cell’s contents
the quantitygj(i) · xiw

1/p
i . Overall,S = lm.

The estimation algorithmE proceeds as follows. First
normalize the sketchLx by scaling it down by an input pa-
rameterr ∈ R+. Now for eachi ∈ [n], compute the median,
over thel hash tables, of thepth power of cells wherei falls
into. Namely, let̂xi be the median of|Hj(hj(i))|p/rwi over
all j ∈ [l]. Then run the PSL reconstruction algorithmR on
the vectors{x̂i}i∈[n] and {wi}i∈[n], to obtain an estimate
σ̂ = σ̂(r). The final output isr · σ̂(r).

We note that it will always suffice to use pairwise inde-
pendence for each set of random variables{wi}i, {gj(i)}i,

and {hj(i)}i for eachj ∈ [l]. For instance, it suffices to
draw each hash functionhj from a universal hash family.

Finally, we remark that, while the reconstruction Alg. 2
takes time Ω(n), one can reduce this to timem ·
(ǫ−1 log n)O(1) by using a more refined heavy hitter sketch.
We discuss this issue later in this section.

Algorithm 1 : Sketching algorithm for norm estimation.
Input is a vectorx ∈ R

n. Parametersp, ǫ, ρ, andm are
specified later.

Generate{wi}i∈[n] as prescribed by PSL, using1

W = W(k) for k = ζρ−1ǫ−2.
Initialize l = O(log n) hash tablesH1, . . . , Hl, each of2

sizem. For each tableHj , choose a random hash
function hj : [n] → [m] and a random
gj : [n] → {−1, +1}.
for eachj ∈ [l] do3

Multiply x coordinate-wise with the vectors4

{w1/p
i }i∈[n] andgj , and hash the resulting vector

into the hash tableHj . Formally,
Hj(z) ,

∑

i:hj(i)=z gj(i) · w1/p
i · xi.

Algorithm 2 : Reconstruction algorithm for norm estima-
tion. Input consists ofl hash tablesHj , precisionswi for
i ∈ [n], and a realr > 0. Other parameters,p, ǫ, ρ, m,
are as in Alg. 1.

For eachi ∈ [n], compute1

x̂i = medianj∈[l]

{ |Hj(hj(i))/r|p

wi

}

.
Apply PSL reconstruction algorithmR to vector2

(x̂1, . . . x̂n) and (w1, . . . wn), and letσ̂ be its output.
Explicitly, for eachi ∈ [n], if x̂iwi ≥ t , 4/ǫ, then set
si , 1

k + k−1
k · x̂iwi/t−1

wi−1 (recall k = ζρ−1ǫ−2 from
PSL), otherwisesi , 0; then, letσ̂ = t

∑

i si.
Outputr · σ̂.3

3.1. EstimatingFk Moments fork > 2

We now present the algorithm for estimatingFk moments
for k > 2, using the PSL Lemma 1.2. To reduce the clash
of parameters, we refer to the problem as “Fp moment
estimation”.

Theorem 3.1. Fix n ≥ 8, p > 2, and 0 < ǫ < 1/3. There
is a randomized linear functionL : R

n → R
S , with S =

O(n1−2/p ·p2ǫ−2−4/p log n), and a deterministic estimation
algorithm E : R

S → R, such that for everyx ∈ R
n, with

probability at least0.51, its outputE(L(x)) approximates
‖x‖p

p within factor 1 + ǫ.

Proof of Theorem 3.1:Our linear sketchL is Alg. 1,
and the estimation algorithmE is Alg. 2, with the following

choice of parameters. Letρ = ǫ/4

np/2−1
. Let W = W(k),

for k = ζρ−1ǫ−2, be from PSL Lemma 1.2. Define
ω = 9Ew∈W

[

w2/p
]

, and note thatω ≤ O(ρ−2/pǫ−4/p)
by Lemma 1.2. Finally we setm = α · O(ρ−2/pǫ−4/p) so
that m ≥ αω, whereα = α(p, ǫ) > 1 will be determined
later.

In Alg. 2, we setr to be a factor1 − 1/p approximation
to ‖x‖2, i.e.,(1−1/p)‖x‖2 ≤ r ≤ ‖x‖2. Note that suchr is
easy to compute (with high probability) using, say, the AMS
linear sketch [1], withO(p2 log n) additional space. Thus,
for the rest, we will just assume that‖x‖2 ∈ [1 − 1/p, 1]
and setr = 1.

The plan is to apply PSL Lemma 1.2 where each unknown
valueai is given by|xi|p, and each estimatêai is given by
x̂i. For this purpose, we need to prove that thex̂i’s are good
approximators. We thus letF2 =

∑n
i=1(xiw

1/p
i)2. Note

that E [F2] = ‖x‖2
2 · Ew∈W

[

w2/p
]

≤ ω/9, and hence by
Markov’s inequality, with probability at least8/9 we have
F2 ≤ ω.

Claim 3.2. Assume thatF2 ≤ ω. Then with high probability
(say≥ 1−1/n2) over the choice of the hash tables, for every
i ∈ [n] the valuex̂i is a (1/wi, e

ǫ)-approximator to|xi|p.

Proof: We shall prove that for eachi ∈ [n] and
j ∈ [l], with probability≥ 8/9 over the choice ofhj and
gj , the value |Hj(hj(i))|

p

wi
is a (1/wi, e

ǫ)-approximator to
|xi|p. Recall that eacĥxi is the median of|Hj(hj(i))|p/wi

over l = O(log n) values of j, we get by applying a
Chernoff bound that with high probability it is a(1/wi, e

ǫ)-
approximator to|xi|p. The claim then follows by a union
bound over alli ∈ [n].

Fix i ∈ [n] and j ∈ [l], let Y , Hj(hj(i)). For
f ∈ [n], define yf = gj(f) · xfw

1/p
f if hj(f) = hj(i)

and 0 otherwise. ThenY = yi + δ where δ ,
∑

f 6=i yf .
Ideally, we would like that |Y |p ≈ |yi|p = |xi|pwi,
i.e., the effect of the errorδ is small. Indeed,E

[

δ2
]

=

E

[

(
∑

f 6=i yf)2
]

= 1
m

∑

f 6=i(xfw
1/p
f)2 ≤ F2/m. Hence,

by Markov’s inequality, |δ| ≤
√

9F2/m ≤ 3/
√

α with
probability at least8/9.

We now argue that if this event|δ| ≤ 3/
√

α occurs,
then |Hj(hj(i))|

p

wi
= |Y |p

wi
=

∣

∣gj(i)xi + δ/w
1/p
i

∣

∣

p
is a good

approximator to|xi|p. Indeed, if |δ|/w
1/p
i ≤ ǫ

2p |xi|, then

clearly |Y |p

wi
= (1± ǫ

2p)p|xi|p. Otherwise, since|δ| ≤ 3/
√

α,
we have that
∣

∣

∣
|Y |p − |xiw

1/p
i |p

∣

∣

∣
≤ (|xiw

1/p
i | + |δ|)p − |xiw

1/p
i |p

≤ (2p
ǫ |δ| + |δ|)p − (2p

ǫ |δ|)p

≤ |δ|p · (2p/ǫ)p ·
(

(1 + ǫ
2p)p − 1

)

≤ (6p)p · ǫ1−p/αp/2.

If we set α = (6p)2/ǫ2−2/p, then we obtain that|Y |p

wi
is

a (1/wi, e
ǫ)-approximator to|xi|p, with probability at least

8/9. We now take median overO(log n) hash tables and
apply a union bound to reach the desired conclusion.

We can now complete the proof of Theorem 3.1. Apply
PSL (Lemma 1.2) withai = |xi|p and âi = x̂i’s. By
Hölder’s inequality forp/2 and the normalizationr = 1, we
have‖x‖p

p ≥ ‖x‖p
2/np/2−1 ≥ ρ/ǫ, and thus additive errorρ

transforms to multiplicative error1+ǫ. It remains to bound
the space:S ≤ O(m log n) = O(αρ−2/pǫ−4/p log n) =
O(p2/ǫ2−2/p ·ǫ−6/pn1−2/p ·log n) = O(p2n1−2/p ·ǫ−2−4/p ·
log n).

3.2. Estimatingℓ1 Norm

To further illustrate the use of the Alg. 1 and 2, we now
show how to use them for estimating theℓ1 norm. In a later
section, we obtain similar results for allℓp, p ∈ [1, 2], except
that the analysis is more involved.

We obtain the following theorem. For clarity of presenta-
tion, the efficiency (space and runtime bounds) are discussed
separately below.

Theorem 3.3. Fix n ≥ 8 and 8/n < ǫ < 1/8. There is
a randomized linear functionL : R

n → R
S , with S =

O(ǫ−3 log2 n), and a deterministic estimation algorithmE :
R

S → R, such that for everyx ∈ R
n, with probability at

least 0.51, its output E(L(x)) approximates‖x‖1 within
factor 1 + ǫ.

Proof: The sketch functionL is given by Alg. 1, with
parametersp = 1, ρ = ǫ/8, and m = Cǫ−3 log n for
a constantC > 0 defined shortly. LetW = W(k) for
k = ζρ−1ǫ−2 be obtained from the PSL Lemma 1.2. Define
ω = 10Ew∈W [w | M], where eventM = M(w) satisfies
Pr[M] ≥ 1 − O(n−2). Note thatω ≤ O(ǫ−3 log n). We set
constantC such thatm ≥ 3ω.

The estimation procedure is just several invocations of
Alg. 2 for different values ofr. For the time being, assume
we hold an overestimate of‖x‖1, which we callr ≥ ‖x‖1.
Then algorithmE works by applying Alg. 2 with this
parameterr.

Let F1 =
∑n

i=1 |xiwi|/r. Note thatE [F1 | ∩iM(wi)] =
‖x‖1/r ·Ew∈W [w | M(w)] ≤ ω/10, and hence by Markov’s
inequality,F1 ≤ ω ≤ m/3 with probability at least9/10−
O(n/n2) ≥ 8/9. Call this eventEr, and assume henceforth
it indeed occurs.

To apply the PSL, we need to prove that eachx̂i in Alg. 2
is a good approximator toxi. Fix i ∈ [n] and j ∈ [l]. We
claim that, conditioned onEr, the with probability at least
2/3, |Hj(hj(i))|

rwi
is a (1/wi, 1)-approximator of|xi|. Indeed,

Hj(hj(i))
rwi

= 1
r gj(i)xi + 1

rwi

∑

f 6=i:hj(f)=hj(i)
gj(f)wfxf ,

and thus,

E

[
∣

∣

∣

|Hj(hj(x))|
rwi

− |xi|
r

∣

∣

∣

]

≤ 1
rwi

∑

f 6=i

1
m |xfwf | ≤ F1

mwi
≤ 1

3wi
.

Hence, by Markov’s inequality, |Hj(hj(x))|
rwi

is a
(1/wi, 1)-approximator of |xi|/r with probability

at least 2/3. By a Chernoff bound, their median
x̂i = medianj∈[l]

{ |Hj(hj(i))|
rwi

}

is a (1/wi, 1)-approximator
to |xi|/r with probability at least1 − n−2. Taking a
union bound over alli ∈ [n] and applying the PSL
(Lemma 1.2), we obtain that the PSL output,σ̂ = σ̂(r) is
an (ǫ/8, eǫ)-approximator to‖x‖1/r, with probability at
least2/3 − 1/9 − 1/n2 ≥ 0.6.

Now, if we hadr ≤ 4‖x‖1, then we would be done asrσ̂
would be a(ǫ‖x‖1/2, eǫ)-approximator to‖x‖1, and hence a
1+2ǫ multiplicative approximator (and this easily transforms
to factor1+ǫ by suitable scaling ofǫ). Without such a good
estimater, we try all possible valuesr that are powers of2,
from high to low, until we make the right guess. Notice that
it is easy to verify that the current guessr is sufficiently large
that we can safely decrease it. Specifically, ifr > 4‖x‖1 then
rσ̂ < eǫ‖x‖1+ǫr/8 ≤ (r/4)·[1+3ǫ/2+ǫ/2] = (1+2ǫ)r/4.
However, ifr ≤ 2‖x‖1 thenrσ̂ ≥ e−ǫ‖x‖1−ǫr/8 ≥ (r/2) ·
[1 − ǫ − ǫ/4] > (1 + 2ǫ)r/4. We also remark that, while
we repeat Alg. 2 forO(log n) times (starting fromr =
nO(1) suffices), there is no need to increase the probability
of success as the relevant eventsEr = {∑i |xiwi| ≤ rm/3}
are nested and contain the last one, wherer/‖x‖1 ∈ [1, 4].

3.3. The Running Times

We now briefly discuss the runtimes of our algorithms: the
update time of the sketching Alg. 1, and the reconstruction
time of the Alg. 2.

It is immediate to note that the update time of our
sketching algorithm isO(log n): one just has to update
O(log n) hash tables. We also note that we can compute
a particularwi in O(log n) time, which is certainly doable
aswi may be generated directly from the seed used for the
pairwise-independent distribution. Furthermore, we notethat
we can sample from the distributionW = W(k) in O(1)
time (see, e.g., [22]).

Now we turn to the reconstruction time of Alg. 2. As
currently described, this runtime isO(n log n). One can
improve the runtime by using the CountMin heavy hitters
(HH) sketch of [14], at the cost of aO(log(log n

ǫ)) factor
increase in the space and update time. This improvement is
best illustrated in the case ofℓ1 estimation. We construct
the new sketch by just applying theΘ(t/m)-HH sketch
(Theorem 5 of [14]) to the vectorx ·w (entry-wise product).
The HH procedure returns at mostO(m/t) coordinatesi,
together with(1/wi, e

ǫ)-approximatorŝxi, for which it is
possible that̂xiwi ≥ t (note that, if the HH procedure does
not return some indexi, we can consider 0 as being its
approximator). This is enough to run the estimation proce-
dureE from PSL, which uses onlyi’s for which x̂iwi ≥ t.
Using the bounds from [14], we obtain the following guar-
antees. The total space isO(ǫ−1 log n log(log n

ǫ) · m/t) =

O(m log n · log(log n
ǫ)) = O(ǫ−3 log2 n · log(log n

ǫ)). The

update time isO(log n · log(log n
ǫ)) and reconstruction time

is O(log2 n · log(log n
ǫ)).

To obtain a similar improvement in reconstruction time for
the Fk-moment problem, one uses an analogous approach,
except that one has to use HH with respect to theℓ2 norm,
instead of theℓ1 norm (considered in [14]).

4. APPLICATIONS II: B OUNDS VIA p-TYPE CONSTANT

In this section, we show further applications of the PSL
to streaming algorithms. As in Section 3, our sketching
algorithm will be linear, following the lines of the generic
Alg. 1.

An important ingredient for our intended applications will
be a variation of the notion ofp-typeof a Banach space (or,
more specifically, thep-type constant). This notion will give
a bound on the space usage of our algorithms, and hence we
will bound it in various settings. Below we state the simplest
such bound, which is a form of the Khintchine inequality.

Lemma 4.1. Fix p ∈ [1, 2], n ≥ 1 and x ∈ R
n. Suppose

that for eachi ∈ [n] we have two random variables,gi ∈
{−1, +1} chosen uniformly at random, andχi ∈ {0, 1}
chosen to be1 with probabilityα ∈ (0, 1) (and0 otherwise).
Then

E

[
∣

∣

∣

∑

i giχixi

∣

∣

∣

p]

≤ α‖x‖p
p.

Furthermore, suppose each family of random variables
{gi}i and {χi}i is only pairwise independent and the two
families are independent of each other. Then, with probabil-
ity at least 7/9, we have that

∣

∣

∣

∣

∣

∑

i

giχixi

∣

∣

∣

∣

∣

p

≤ 32+pα‖x‖p
p.

The proof of this lemma appears in the full paper.

4.1. ℓp-norm for p ∈ [1, 2]

We now use Alg. 1 and 2 to estimate theℓp norm for
p ∈ [1, 2]. We use Lemma 4.1 to bound the space usage.

Theorem 4.2.Fix p ∈ [1, 2], n ≥ 6, and0 < ǫ < 1/8. There
is a randomized linear functionL : R

n → R
S , with S =

O(ǫ−2−p log2 n), and a deterministic estimation algorithm
E, such that for everyx ∈ R

n, with probability at least
0.51, E(L(x)) is a factor1 + ǫ approximation to‖x‖p

p.

Proof: Our sketch functionL is given by Alg. 1. We
set ρ = ǫ/8. Let W = W(k) for k = ζρ−1ǫ−2 obtained
from the PSL (Lemma 1.2). Defineω = 10Ew∈W [w | M],
where eventM = M(w) satisfiesPr[M] ≥ 1 − O(n−2).
Note thatω ≤ O(ǫ−3 log n). We setm = αω for a constant
α > 0 to be determined later.

We now describe the exact reconstruction procedure,
which will be just several invocations of the algorithm 2 for
different values ofr. As in Theorem 3.3, we guessr > 0
starting from the highest possible value and halving it each

time, until we obtain a good estimate:‖x‖p ≤ r ≤ 4‖x‖p

(alternatively, one could prepare for all possibler’s). To
simplify the exposition, let us just assume in the sequel that
r = 1 and thus1/4 ≤ ‖x‖p ≤ 1.

Let Fp =
∑n

i=1 |xi|pwi. Note thatE [Fp | ∩iM(wi)] =
‖x‖p

p · Ew∈W [w | M(w)] ≤ ω/10, and hence by Markov’s
inequality,Fp ≤ ω with probability at least8/9. Call this
event E and assume henceforth it occurs. To apply PSL,
we need to prove that everŷxi from Alg. 2 is a good
approximator toxi.

Claim 4.3. AssumeFp ≤ ω and fix i ∈ [n]. If α ≥
32+pǫ1−p, then with high probability,x̂i is a (1/wi, e

ǫ)-
approximator to|xi|p.

Proof: Fix j ∈ [l]; we shall prove that|Hj(hj(i))|p is a
(1, 1 + ǫ)-approximator to|xi|pwi, with probability at least
2/3. Then we would be done by Chernoff bound, asx̂i is a
median overl = O(log n) independent trialsj ∈ [l].

For f ∈ [n], defineyf = gj(f) · xiw
1/p
i if hj(f) = hj(i)

and yf = 0 otherwise. DefineY , Hj(hj(i)) = yi + δ,
whereδ =

∑

f 6=i yf . We apply Lemma 4.1 to conclude that
E [|δ|p] ≤ Fp/m, and hence|δ|p ≤ 3ω/m ≤ 3/α with
probability at least2/3. Assume henceforth this is indeed
the case.

Now we distinguish two cases. First, suppose|xiw
1/p
i | ≥

2
ǫ · |δ|. Then|Y |p = (1±ǫ/2)|xi|pwi. Otherwise,|xiw

1/p
i | <

2
ǫ · |δ|, and then

∣

∣

∣
|Y |p − |xiw

1/p
i |p

∣

∣

∣
≤ (|xiw

1/p
i | + |δ|)p − |xiw

1/p
i |p

≤ |δ|p · ((2/ǫ + 1)p − 2/ǫ)

≤ |δ|p · (2/ǫ)p · (1 + pǫ − 1)

≤ p2p · 3 · ǫ1−p/α.

Thus, if we setα ≥ 32+p(1/ǫ)p−1, then in both cases
|Y |p is a (1, eǫ)-approximator to|xi|pwi (under the event
that occurs with probability at least2/3).

We can now complete the proof of Theorem 4.2. Applying
Lemma 1.2, we obtain that its output,̂σ = σ̂(r), is a
(ǫ/8, e2ǫ)-approximator to‖x‖p, with probability at least
2/3 − 1/9 − 1/n2 ≥ 0.51.

4.2. Mixed and cascaded norms

We now show how to estimate mixed norms such as the
ℓp,q norms. In the latter case, the input is a matrixx ∈
R

n1·n2 , and theℓp,q norm is‖x‖p,q = (
∑

i ‖xi‖p
q)

1/p, where
xi is the ith row in the matrix.

We show a more general theorem, for the normℓp(X),
which is defined similarly for a general Banach spaceX ; the
ℓp,q norms will be just particular cases. To state the general
result, we need the following definition.

Definition 4.4. Fix p ≥ 1, n, κ ∈ N, ω > 0, δ ∈ [0, 1),
and let X be a finite dimensional Banach space. Thethe
generalizedp-type, denotedα(X, p, n, κ, ω, δ), is the biggest

constantα > 0 satisfying the following: For eachi ∈ [n],
let gi ∈ {−1, +1} be a random variable drawn uniformly
at random, and letχi ∈ {0, 1} be a random variable that is
equal1 with probability1/α and0 otherwise. Furthermore,
each family{gi}i and {χ}i is κ-wise independent, and the
two families are independent of each other. Then, for every
x1, . . . xn ∈ X satisfying

∑

i∈[n] ‖xi‖p
X ≤ ω,

Pr
[

∥

∥

∑

i∈[n] giχixi

∥

∥

p

X
≤ 1

]

≥ 1 − δ.

Theorem 4.5.Fix p ≥ 1, n ≥ 2, and0 < ǫ < 1/3. LetX be
a Banach space admitting a linear sketchLX : X → R

SX ,
with spaceSX = SX(ǫ), and let EX : R

SX → R be its
reconstruction procedure.

Then there is a randomized linear functionL : Xn → R
S ,

and an estimation algorithmE which, for anyx ∈ Xn,
given the sketchLx, outputs a factor1 + ǫ approximation
to ‖x‖p,X , with probability at least0.51.

Furthermore, S ≤ SX(ǫ/2) ·
α(X, p, n, κ, O(pǫ−4 log n), 2/3) · O(log n), where κ
is such that each functiongj andhj is κ-wise independent.

We note that the result forℓp,q norms will follow by
proving some particular bounds on the parameterα, the
generalizedp-type. We discuss these implications after the
proof of the theorem.

Proof of Theorem 4.5:Our sketch functionL is given
by algorithm 1, with one notable modification.xi’s are now
vectors fromX and the hash table cells hold sketches given
by sketching functionLX up to 1 + ǫ/2 approximation. In
particular, each cell of hash tableHj(z) =

∑

i:hj(i)=z gj(i)·
w

1/p
i · LXxi. Furthermore, abusing notation, we use the

notation ‖Hj(z)‖q for somez ∈ [m] to mean the result
of theE-estimation algorithm on the sketchHj(z) (since it
is a 1 + ǫ/2 approximation, we can afford such additional
multiplicative error).

We set ρ = ǫ/8. Let W = W(k) by for k =
ζρ−1ǫ−2 obtained from the PSL Lemma 1.2. Defineω =
10Ew∈W [w | M], where eventM = M(w) satisfies
Pr[M] ≥ 1 − O(n−2). Note thatω ≤ O(ǫ−3 log n). We
setm later.

We now describe the exact reconstruction procedure,
which will be just several invocations of the algorithm 2 for
different values ofr. As in Theorem 3.3, we guessr starting
from high and halving it each time, until we obtain a good
estimate —‖x‖p,X ≤ r ≤ 4‖x‖p,X (alternatively, one could
prepare for all possibler’s). For simplified exposition, we
just assume that1/4 ≤ ‖x‖p,X ≤ 1 andr = 1 in the rest.

Let Fp,X =
∑n

i=1 ‖xiw
1/p
i ‖p

X . Note that
E [Fp,X | ∩M(wi)] = ‖x‖p

X · Ew∈W [w | M(w)] ≤ ω/10,
and henceFp,X ≤ ω with probability at least8/9
by Markov’s bound. Call this eventE . To apply PSL,
we need to prove that̂xi’s from Alg. 2 are faithful
approximators. For this, we prove that, for appropriate

choice ofα = α(p, X, ǫ, n), for eachj ∈ [l], ‖Hj(hj(i))‖p
X

is a (1, 1 + ǫ)-approximator to‖xi‖p
Xwi, with probability

at least2/3. This would imply that, sincêxi is a median
over O(log n) independent trials,̂xi is a (1/wi, 1 + ǫ)-
approximator to‖xi‖p

X . Once we have such a claim, we
apply Lemma 1.2, and conclude that the output,σ̂ = σ̂(r),
is a (ǫ/8, 1 + 2ǫ)-approximator to‖x‖p,X , with probability
at least2/3 − 1/9 − 1/n ≥ 0.51.

Claim 4.6. Fix p ≥ 1 and ω ∈ R+. Let m =
α(X, p, κ, 3pω/ǫ, 2/3), the generalizedp-type ofX .

AssumeFp,X ≤ ω and fix i ∈ [n], j ∈ [l]. Then
‖Hj(hj(i))‖p

X is a (1, 1+ǫ)-approximator to‖xi‖p
Xwi with

probability at least 2/3.

Proof: For f ∈ [n], define yf = gj(f) · xiw
1/p

if hj(f) = hj(i) and yf = 0 otherwise. Then,a ,
∑

f∈[n]:hj(f)=hj(i)
gj(i)xi = yi + δ, whereδ =

∑

f 6=i yf .
Then, by the definition of generalizedp-type ofX , whenever
m ≥ α(X, p, κ, ω · 3p

ǫ , 2/3), we have that‖δ‖X ≤ ǫ/3, with
probability at least2/3.

Now we distinguish two cases. First, suppose
‖xiw

1/p
i ‖X ≥ 2p

ǫ · ‖δ‖X . Then ‖a‖p
X ≈ (1 ± ǫ)‖xi‖p

Xwi.
Otherwise, if‖xiw

1/p
i ‖X < 2p

ǫ · ‖δ‖X , then

‖a‖p
X ≤

(

‖xiw
1/p
i ‖X + ‖δ‖X

)p

≤ (2p‖δ‖X/ǫ + ‖δ‖X)p

≤ ‖δ‖p
X · (2p/ǫ + 1)p ≤ 1.

Hence, we conclude that‖a‖p
X (and thus‖Hj(hj(i))‖p

X) is
a (1, 1 + ǫ)-approximator to‖xi‖p

Xwi, with probability at
least2/3.

The claim concludes the proof of Theorem 4.5.
Note that the space is S = O(SX(ǫ/2) ·
α(X, p, κ, O(pǫ−4 log n), 2/3) · log n).

We now show the implications of the above theorem. For
this, we present the following lemma, whose proof appears
in the full paper.

Lemma 4.7. Fix n, m ∈ N, ω ∈ R+, and a finite
dimensional Banach spaceX . We have the following bounds
on the generalizedp-type:

(a)) if 0 < p ≤ q ≤ 2, thenα(ℓm
q , p, n, 2, ω, 2/3) ≤ O(ω).

(b)) if p, q ≥ 2, we have thatα(ℓm
q , p, n, 2q, ω, 2/3) ≤

92qO(1)ω2/p · n1−2/p, and if q ≥ 2 and p ∈ (0, 2),
thenα(ℓm

q , p, n, 2q, ω, 2/3) ≤ 92qO(1)ω2/p.
(c)) for p ≥ 1, we have thatα(X, p, n, 2, ω, 2/3) ≤

O(n1−1/pω1/p), and for p ∈ (0, 1), we have that
α(X, p, n, 2, ω, 2/3) ≤ O(ω1/p).

Combining Theorem 4.5 and Lemma 4.7, also using
Theorem 3.1, we obtain the following linear sketches for
ℓp,q norms, which are optimal up to(ǫ−1 log n)O(1) factors
(see, e.g., [23]).

Corollary 4.8. There exist linear sketches forℓn1

p (ℓn2

q), for
n1, n2 ≤ n and p, q ≥ 1, with the following space bounds
S.

For 0 < p ≤ q ≤ 2, the bound isS = (ǫ−1 log n)O(1).
If q ≥ 2, p ∈ (0, 2), thenS = n

1−2/q
2 · (pqǫ−1 log n)O(1).

If p, q ≥ 2, thenS = n
1−2/p
1 n

1−2/q
2 · (pqǫ−1 log n)O(1).

If p ≥ 1, q ∈ (0, p), thenS = n
1−1/p
1 · (ǫ−1 log n)O(1).

If p ∈ (0, 1), q ∈ (0, p), thenS = (ǫ−1 log n)O(1).

ACKNOWLEDGMENTS

We would like to thank Piotr Indyk, Assaf Naor, and
David Woodruff for helpful discussions about theFk-
moment estimation problem. We also thank Andrew Mc-
Gregor for kindly giving an overview of the landscape of
the heavy hitters problem.

REFERENCES

[1] N. Alon, Y. Matias, and M. Szegedy, “The space complexity
of approximating the frequency moments,”J. Comp. Sys. Sci.,
vol. 58, pp. 137–147, 1999, previously appeared in STOC’96.

[2] A. Andoni, K. Do Ba, P. Indyk, and D. Woodruff, “Efficient
sketches for Earth-Mover Distance, with applications,” in
Proc. of FOCS, 2009.

[3] A. Andoni, R. Krauthgamer, and K. Onak, “Polylogarithmic
approximation for edit distance and the asymmetric query
complexity,” in Proc. of FOCS, 2010, a full version is
available athttp://arxiv.org/abs/1005.4033.

[4] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar,
“An information statistics approach to data stream and com-
munication complexity,”J. Comput. Syst. Sci., vol. 68, no. 4,
pp. 702–732, 2004.

[5] L. Bhuvanagiri and S. Ganguly, “Estimating entropy overdata
streams,” inProc. of ESA, 2006, pp. 148–159.

[6] L. Bhuvanagiri, S. Ganguly, D. Kesh, and C. Saha, “Simpler
algorithm for estimating frequency moments of data streams,”
in Proc. of SODA, 2006, pp. 708–713.

[7] V. Braverman and R. Ostrovsky, “Measuring independenceof
datasets,” inProc. of STOC, 2010.

[8] ——, “Recursive sketching for frequency moments,”CoRR,
vol. abs/1011.2571, 2010.

[9] ——, “Zero-one frequency laws,” inProc. of STOC, 2010.
[10] A. Chakrabarti, S. Khot, and X. Sun, “Near-optimal lower

bounds on the multi-party communication complexity of set
disjointness,” inIEEE Conference on Computational Com-
plexity, 2003, pp. 107–117.

[11] M. Charikar, K. Chen, and M. Farach-Colton, “Finding fre-
quent items in data streams,” inProc. of ICALP, 2002.

[12] E. Cohen, N. G. Duffield, H. Kaplan, C. Lund, and M. Tho-
rup, “Stream sampling for variance-optimal estimation of
subset sums,” inProc. of SODA, 2009, pp. 1255–1264.

[13] G. Cormode and M. Muthukr-
ishnan, “Count-min sketch,” 2010,
https://sites.google.com/site/countminsketch.

[14] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: the count-min sketch and its applications,”J.
Algorithms, vol. 55, no. 1, pp. 58–75, 2005.

[15] ——, “Space efficient mining of multigraph streams,” inProc.
of PODS, 2005.

[16] N. G. Duffield, C. Lund, and M. Thorup, “Priority sampling
for estimation of arbitrary subset sums,”J. ACM, vol. 54,
no. 6, 2007.

[17] S. Ganguly, “Personal communication,” April 2011.
[18] S. Ganguly, M. Bansal, and S. Dube, “Estimating hybrid

frequency moments of data streams,” inFrontiers in Algo-
rithmics, 2008.

[19] S. Ganguly and G. Cormode, “On estimating frequency
moments of data streams,” inProc. of RANDOM, 2007.

[20] P. Indyk, “Stable distributions, pseudorandom generators,
embeddings and data stream computation,”J. ACM, vol. 53,
no. 3, pp. 307–323, 2006, previously appeared in FOCS’00.

[21] P. Indyk and D. Woodruff, “Optimal approximations of the
frequency moments of data streams,”Proc. of STOC, 2005.

[22] S. Ioffe, “Improved consistent sampling, weighted minhash
and L1 sketching,” inInternational Conference on Data
Mining, 2010.

[23] T. Jayram and D. Woodruff, “The data stream space com-
plexity of cascaded norms,” inProc. of FOCS, 2009.

[24] H. Jowhari, M. Saglam, and G. Tardos, “Tight bounds for
Lp samplers, finding duplicates in streams, and related prob-
lems,” CoRR, vol. abs/1012.4889, 2010.

[25] D. M. Kane, J. Nelson, E. Porat, and D. P. Woodruff, “Fast
moment estimation in data streams in optimal space,” inProc.
of STOC, 2011.

[26] D. M. Kane, J. Nelson, and D. P. Woodruff, “On the exact
space complexity of sketching small norms,” inProc. of
SODA, 2010.

[27] P. Li, “Estimators and tail bounds for dimension reduction in
lp (0 < p ≤ 2) using stable random projections,” inProc. of
SODA, 2008.

[28] J. Misra and D. Gries, “Finding repeated elements,”Sci.
Comput. Program., vol. 2, no. 2, pp. 143–152, 1982.

[29] M. Monemizadeh and D. Woodruff, “1-pass relative-error lp-
sampling with applications,” inProc. of SODA, 2010.

[30] M. Muthukrishnan,Data Streams: Algorithms and Aplica-
tions, ser. Foundations and Trends in Theoretical Computer
Science. Now Publishers Inc, Jan. 2005.

[31] J. Nelson and D. Woodruff, “Fast Manhattan sketches in data
streams,” inProc. of PODS, 2010.

[32] M. Szegedy, “The DLT priority sampling is essentially opti-
mal,” in Proc. of STOC, 2006, pp. 150–158.

APPENDIX

Claim A.1. For k ≥ 1, supposeuj are drawn uniformly at
random from[0, 1]. Then, for anyα ∈ (0, 1), we have that

Euj [(maxj 1/uj)
α
] ≤ O

(

kα

1−α

)

.

Proof: We compute the expectation directly:

Euj [(maxj 1/uj)
α
] =

∫ 1

0

u−α · k(1 − u)k−1 du

≤
∫ 1/k

0

k · u−α du +

∫ 1

1/k

kα · k(1 − u)k−1 du

= k ·
[

u1−α

1−α

]1/k

0
+ kα

[

− (1 − u)k
]1

1/k
≤ O(kα

1−α).

