Approximating Edit Distance in Near-Linear Time*

Alexandr Andoni† Krzysztof Onak‡
Microsoft Research SVC Carnegie Mellon University

September 26, 2011

Abstract

We show how to compute the edit distance between two strings of length n up to a factor of $2^{O(\sqrt{\log n})}$ in $n^{1+o(1)}$ time. This is the first sub-polynomial approximation algorithm for this problem that runs in near-linear time, improving on the state-of-the-art $n^{1/3+o(1)}$ approximation. Previously, approximation of $2^{O(\sqrt{\log n})}$ was known only for embedding edit distance into ℓ_1, and it is not known if that embedding can be computed in less than quadratic time.

1 Introduction

The edit distance (or Levenshtein distance) between two strings is the number of insertions, deletions, and substitutions needed to transform one string into the other [Lev65]. This distance is of fundamental importance in several fields such as computational biology and text processing/searching, and consequently, problems involving edit distance were studied extensively (see [Nav01], [Gus97], and references therein). In computational biology, for instance, edit distance and its slight variants are the most elementary measures of dissimilarity for genomic data, and thus improvements on edit distance algorithms have the potential of major impact.

The basic problem is to compute the edit distance between two strings of length n over some alphabet. The text-book dynamic programming runs in $O(n^2)$ time (see [CLRS01] and references therein). This was only slightly improved by Masek and Paterson [MP80] to $O(n^2/\log^2 n)$ time for constant-size alphabets\(^1\). Their result from 1980 remains the best algorithm to this date.

Since near-quadratic time is too costly when working on large datasets, practitioners tend to rely on faster heuristics (see [Gus97], [Nav01]). This leads to the question of finding fast algorithms with provable guarantees, specifically: can one approximate the edit distance between two strings in near-linear time [Ind01, BEK+03, BJKK04, BES06, CPSV00, Cor03, OR07, KN06, KR06]?

† This work was done when the author was at Massachusetts Institute of Technology, while supported in part by David and Lucille Packard Fellowship and by MADALGO (Center for Massive Data Algorithmics, funded by the Danish National Research Association) and by NSF grant CCF-0728645.

‡ Supported in part by a Symantec research fellowship, NSF grant 0728645, and NSF grant 0732334. This work was done when the author was a graduate student at Massachusetts Institute of Technology.

\(^1\) The result has been only recently extended to arbitrarily large alphabets by Bille and Farach-Colton [BFC08] with a $O(\log \log n)^2$ factor loss in time.
Prior results on approximate algorithms\(^2\). A linear-time \(\sqrt{n}\)-approximation algorithm immediately follows from the \(O(n + d^2)\)-time exact algorithm (see Landau, Myers, and Schmidt [LMS98]), where \(d\) is the edit distance between the input strings. Subsequent research improved the approximation first to \(n^{3/7}\), and then to \(n^{1/3 + o(1)}\), due to, respectively, Bar-Yossef, Jayram, Krauthgamer, and Kumar [BJKK04], and Batu, Ergün, and Sahinalp [BES06].

A sublinear time algorithm was obtained by Batu, Ergün, Kilian, Magen, Raskhodnikova, Rubinfeld, and Sami [BEK+03]. Their algorithm distinguishes the cases when the distance is \(O(n^{1-\epsilon})\) vs. \(\Omega(n)\) in \(\tilde{O}(n^{1-2\epsilon} + n^{(1-\epsilon)/2})\) time\(^3\) for any \(\epsilon > 0\). Note that their algorithm cannot distinguish distances, say, \(O(n^{0.1})\) vs. \(\Omega(n^{0.9})\).

On a related front, in 2005, the breakthrough result of Ostrovsky and Rabani gave an embedding of the edit distance metric into \(\ell_1\) with \(2\tilde{O}(\sqrt{\log n})\) distortion [OR07] (see preliminaries for definitions). This result vastly improved related applications, namely nearest neighbor search and sketching. However, it did not have implications for computing edit distance between two strings in subquadratic time. In particular, to the best of our knowledge it is not known whether it is possible to compute their embedding in less than quadratic time.

The best approximation to this date remains the 2006 result of Batu, Ergün, and Sahinalp [BES06], achieving \(n^{1/3 + o(1)}\) approximation. Even for \(n^{2-\epsilon}\) time, their approximation is \(n^{\epsilon/3 + o(1)}\).

Our result. We obtain \(2\tilde{O}(\sqrt{\log n})\) approximation in near-linear time. This is the first sub-polynomial approximation algorithm for computing the edit distance between two strings running in strongly subquadratic time.

Theorem 1.1. The edit distance between two strings \(x, y \in \{0, 1\}^n\) can be computed up to a factor of \(2\tilde{O}(\sqrt{\log n \log \log n})\) in \(n \cdot 2\tilde{O}(\sqrt{\log n \log \log n})\) time.

Our result immediately extends to two more related applications. The first application is to sublinear-time algorithms. In this scenario, the goal is to compute the distance between two strings \(x, y\) of the same length \(n\) in \(o(n)\) time. For this problem, for any \(\alpha < \beta \leq 1\), we can distinguish distance \(O(n^\alpha)\) from distance \(\Omega(n^\beta)\) in \(O(n^{\alpha+2(1-\beta)+o(1)})\) time.

The second application is to the problem of pattern matching with errors. In this application, one is given a text \(T\) of length \(N\) and a pattern \(P\) of length \(n\), and the goal is to report the substring of \(T\) that minimizes the edit distance to \(P\). Our result immediately gives an algorithm for this problem running in \(O(N \log N) \cdot 2\tilde{O}(\sqrt{\log n})\) time with \(2\tilde{O}(\sqrt{\log n})\) approximation. We note that the best exact algorithm for this problem runs in time \(O(N n/\log^2 n)\) [MP80]. Better algorithms may be obtained if we restrict the minimal distance between the pattern and best substring of \(T\) or for relatives of the edit distance. In particular, Sahinalp and Vishkin [SV96] and Cole and Harihan [CH02] showed linear-time algorithms for finding all substrings at distance at most \(nc\), where \(c\) is a constant in \((0, 1)\). Moreover, Cormode and Muthukrishnan gave a near-linear time \(\tilde{O}(\log n)\)-approximation algorithm when the distance is the edit distance with moves.

1.1 Preliminaries and Notation

Before describing our general approach and the techniques used, we first introduce a few definitions.

\(^2\)We make no attempt at presenting a complete list of results for restricted problems, such as average case edit distance, weakly-repetitive strings, bounded distance regime, or related problems, such as pattern matching/nearest neighbor, sketching. However, for a very thorough survey, if only slightly outdated, see [Nav01].

\(^3\)We use \(\tilde{O}(f(n))\) to denote \(f(n) \cdot \log^{O(1)} f(n)\).
We write $\text{ed}(x, y)$ to denote the edit distance between strings x and y. We use the notation $[n] = \{1, 2, 3, \ldots, n\}$. For a string x, a substring starting at i, of length m, is denoted $x[i : i + m - 1]$. Whenever we say with high probability (w.h.p.) throughout the paper, we mean “with probability $1 - 1/p(n)$”, where $p(n)$ is a sufficiently large polynomial function of the input size n.

Embeddings. For a metric (M, d_M), and another metric (X, ρ), an embedding is a map $\phi : M \to X$ such that, for all $x, y \in M$, we have $d_M(x, y) \leq \rho(\phi(x), \phi(y)) \leq \gamma \cdot d_M(x, y)$ where $\gamma \geq 1$ is the distortion of the embedding. In particular, all embeddings in this paper are non-contracting.

We say embedding ϕ is oblivious if for any subset $S \subset M$ of size n, the distortion guarantee holds for all pairs $x, y \in S$ with high probability. The embedding ϕ is non-oblivious if it holds for a specific set S (i.e., ϕ is allowed to depend on S).

Metrics. The k-dimensional ℓ_1 metric is the set of points living in \mathbb{R}^k under the distance $\|x - y\|_1 = \sum_{i=1}^k |x_i - y_i|$. We also denote it by ℓ_1^k.

We define thresholded Earth-Mover Distance, denoted TEMD_t for a fixed threshold $t > 0$, as the following distance on subsets A and B of size $s \in \mathbb{N}$ of some metric (M, d_M):

$$\text{TEMD}_t(A, B) = \frac{1}{s} \min_{a \in A} \min_{\tau : A \to B} \sum_{a \in A} \min \{d_M(a, \tau(a)), t\} \tag{1}$$

where τ ranges over all bijections between sets A and B. TEMD_∞ is the simple Earth-Mover Distance (EMD). We will always use $t = s$ and thus drop the subscript t; i.e., $\text{TEMD} = \text{TEMD}_s$.

A graph (tree) metric is a metric induced by a connected weighted graph (tree) G, where the distance between two vertices is the length of the shortest path between them. We denote an arbitrary tree metric by TM.

Semimetric spaces. We define a semimetric to be a pair (M, d_M) that satisfies all the properties of a metric space except the triangle inequality. A γ-near metric is a semimetric (M, d_M) such that there exists some metric (M, d_M^n) (satisfying the triangle inequality) with the property that, for any $x, y \in M$, we have that $d_M^n(x, y) \leq d_M(x, y) \leq \gamma \cdot d_M^n(x, y)$.

Product spaces. A sum-product over a metric $\mathcal{M} = (M, d_M)$, denoted $\bigoplus_{\ell_1}^k \mathcal{M}$, is a derived metric over the set M^k, where the distance between two points $x = (x_1, \ldots, x_k)$ and $y = (y_1, \ldots, y_k)$ is equal to

$$d_{1,M}(x, y) = \sum_{i \in [k]} d_M(x_i, y_i).$$

For example the space $\bigoplus_{\ell_1}^k \mathbb{R}$ is just the k-dimensional ℓ_1.

Analogously, a min-product over $\mathcal{M} = (M, d_M)$, denoted $\bigoplus_{\ell_\min}^k \mathcal{M}$, is a semimetric over M^k, where the distance between two points $x = (x_1, \ldots, x_k)$ and $y = (y_1, \ldots, y_k)$ is

$$d_{\min,M}(x, y) = \min_{i \in [k]} \{d_M(x_i, y_i)\}.$$

We also slightly abuse the notation by writing $\bigoplus_{\ell_\min}^k \text{TM}$ to denote the min-product of k tree metrics (that could differ from each other).
1.2 Techniques

Our starting point is the Ostrovsky-Rabani embedding [OR07]. For strings \(x, y \), as well as for all substrings \(\sigma \) of specific lengths, we compute some vectors \(v_\sigma \) living in low-dimensional \(\ell_1 \) such that the distance between two such vectors approximates the edit distance between the associated (sub-)strings. In this respect, these vectors can be seen as an embedding of the considered strings into \(\ell_1 \) of polylogarithmic dimension. Unlike the Ostrovsky-Rabani embedding, however, our embedding is non-oblivious in the sense that the vectors \(v_\sigma \) are computed given all the relevant strings \(\sigma \). In contrast, Ostrovsky and Rabani give an oblivious embedding \(\phi_n : \{0, 1\}^n \to \ell_1 \) such that \(\|\phi_n(x) - \phi_n(y)\|_1 \) approximates \(\text{ed}(x, y) \). However, the obliviousness comes at a high price: their embedding requires a high dimension, of order \(\Omega(n) \), and a high computation time, of order \(\Omega(n^2) \) (even when allowing randomized embedding, and a constant probability of a correctness). We further note that reducing the dimension of this embedding seems unlikely as suggested by the results on impossibility of dimensionality reduction within \(\ell_1 \) [CS02, BC03, LN04]. Nevertheless, the general recursive approach of the Ostrovsky-Rabani embedding is the starting point of the algorithm from this paper.

The heart of our algorithm is a near-linear time algorithm that, given a sequence of low-dimensional vectors \(v_1, \ldots, v_n \in \ell_1 \) and an integer \(s < n \), constructs new vectors \(q_1, \ldots, q_m \in \ell_1^{O(\log^2 n)} \), where \(m = n - s + 1 \), with the following property. For all \(i, j \in [m] \), the value \(\|q_i - q_j\|_1 \) approximates the Earth-Mover Distance (EMD)\(^4\) between the sets \(A_i = \{v_i, v_{i+1}, \ldots, v_{i+s-1}\} \) and \(A_j = \{v_j, v_{j+1}, \ldots, v_{j+s-1}\} \). To accomplish this (non-oblivious) embedding, we proceed in two stages. First, we embed (obliviously) the EMD metric into a min-product of \(\ell_1 \)'s of low dimension. In other words, for a set \(A \), we associate a matrix \(L(A) \), of polylogarithmic size, such that the EMD distance between sets \(A \) and \(B \) is approximated by \(\min_i \sum_t |L(A)_{rt} - L(B)_{rt}| \). Min-products help us simultaneously on two fronts: one is that we can apply a weak dimensionality reduction in \(\ell_1 \), using the Cauchy projections, and the second one enables us to accomplish a low-dimensional EMD embedding itself. Our embedding \(L(\cdot) \) is not only low-dimensional, but it is also linear, allowing us to compute matrices \(L(A_i) \) in near-linear time by performing one pass over the sequence \(v_1, \ldots, v_n \). Linearity is crucial here as even the total size of \(A_i \)'s is \(\sum_i |A_i| = (n - s + 1) \cdot s \), which can be as high as \(\Omega(n^2) \), and so processing each \(A_i \) separately is infeasible.

In the second stage, we show how to embed a set of \(n \) points lying in a low-dimensional min-product of \(\ell_1 \)'s back into a low-dimensional \(\ell_1 \) with only small distortion. We note that this is not possible in general, with any bounded distortion, because such a set of points does not even form a metric. We show that this is possible when we assume that the semi-metric induced by the set of points approximates some metric (in our case, the set of points approximates the initial EMD metric). The embedding from this stage starts by embedding a min-product of \(\ell_1 \)'s into a low-dimensional min-product of tree metrics. We further embed the latter into an \(n \)-point metric supported by the shortest-path metric of a sparse graph. Finally, we observe that we can implement Bourgain’s embedding on a sparse graph metric in near-linear time. These last two steps make our embedding non-oblivious.

1.3 Recent Work

We note that the recent work [AKO10] has shown that one can approximate the edit distance between two strings up to a multiplicative factor of \((\log n)^{O(1/\epsilon)} \) in \(n^{1+\epsilon} \) time, for any desired

\(^4\)In fact, our algorithm does this for thresholded EMD, TEMD, but the technique is precisely the same.
$\epsilon > 0$. Although the new result obtains polylogarithmic approximation, the running time is slightly higher than the algorithm presented here. For a comparable approximation, obtained for $\epsilon = \sqrt{\log \log n / \log n}$, the algorithm of [AKO10] does not improve the running time (up to constants hidden by the big O notation). We further remark that the techniques of [AKO10] are disjoint from the techniques presented here, and are based on asymmetric sampling of one of the strings.

2 Short Overview of the Ostrovsky-Rabani Embedding

We now briefly describe the embedding of Ostrovsky and Rabani [OR07]. Some notions introduced here are used in our algorithm described in the next section.

The embedding of Ostrovsky and Rabani is recursive. For a fixed n, they construct the embedding of edit distance over strings of length n using the embedding of edit distance over strings of shorter lengths $l \leq n/2\sqrt{\log n \log \log n}$. We denote their embedding of length-n strings by $\phi_n : \{0,1\}^n \to \ell_1$, and let $d^{\text{OR}}_n(x,y)$ be the resulting distance: $d^{\text{OR}}_n(x,y) = \|\phi_n(x) - \phi_n(y)\|_1$. For two strings $x,y \in \{0,1\}^n$, the embedding is such that $d^{\text{OR}}_n = \|\phi_n(x) - \phi_n(y)\|_1$ approximates an “idealized” distance $d^*_{n}(x,y)$, which itself approximates the edit distance between x and y.

Before describing the “idealized” distance d^*_{n}, we introduce some notation. Partition x into $b = 2\sqrt{\log n \log \log n}$ blocks called $x^{(1)}, \ldots, x^{(b)}$ of length $l = n/b$. Next, fix some $j \in [b]$ and $s \leq l$. We consider the set of all substrings of $x^{(j)}$ of length $l - s + 1$, embed each one recursively via ϕ_{l-s+1}, and define $S^s_j(x) \subseteq \ell_1$ to be the set of resulting vectors (note that $|S^s_j| = s$). Formally,

$$S^s_j(x) = \{ \phi_{l-s+1}(x[\lfloor (j-1)l + z \rfloor : \lfloor (j-1)l + z + l - s \rfloor]) \mid z \in [s] \}.$$

Taking ϕ_{l-s+1} as given (and thus also the sets $S^s_j(x)$ for all x), define the new “idealized” distance d^*_{n} approximating the edit distance between strings $x,y \in \{0,1\}^n$ as

$$d^*_{n}(x,y) = c \sum_{j=1}^{b} \sum_{s \leq l} \text{TEMD}(S^s_j(x), S^s_j(y))$$

(2)

where TEMD is the thresholded Earth-Mover Distance (defined in Equation (1)), and c is a sufficiently large normalization constant ($c \geq 12$ suffices). Using the terminology from the preliminaries, the distance function d^*_{n} can be viewed as the distance function of the sum-product of TEMDs, i.e., $\Theta_{\ell_1}^b \Theta_{\ell_1}^{O(\log n)} \text{TEMD}$, and the embedding into this product space is attained by the natural identity map (on sets S^s_j).

The key idea is that the distance $d^*_{n}(x,y)$ approximates edit distance well, assuming that ϕ_{l-s+1} approximates edit distance well, for all $s = 2^f$ where $f \in \{1,2,\ldots, |\log_2 l|\}$. Formally, Ostrovsky and Rabani show that:

Fact 2.1 ([OR07]). Fix n and $b < n$, and let $l = n/b$. Let $D_{n/b}$ be an upper bound on distortion of ϕ_{l-s+1} viewed as an embedding of edit distance on strings $\{x[i : i+l-s], y[i : i+l-s] \mid i \in [n-l+s]\}$, for all $s = 2^f$ where $f \in \{1,2,\ldots, |\log_2 l|\}$. Then,

$$\text{ed}(x,y) \leq d^*_{n}(x,y) \leq \text{ed}(x,y) \cdot (D_{n/b} + b) \cdot O(\log n).$$

To obtain a complete embedding, it remains to construct an embedding approximating d^*_{n} up to a small factor. In fact, if one manages to approximate d^*_{n} up to a poly-logarithmic factor, then the
final distortion comes out to be $2^{O(\sqrt{\log n \log \log n})}$. This follows from the following recurrence on the distortion factor D_n. Suppose ϕ_n is an embedding that approximates d_n^* up to a factor $\log^{O(1)} n$. Then, if D_n is the distortion of ϕ_n (as an embedding of edit distance), then Fact 2.1 immediately implies that, for $b = 2\sqrt{\log n \log \log n}$,

$$D_n \leq D_{n/2^{\sqrt{\log n \log \log n}}} \cdot \log^{O(1)} n + 2^{O(\sqrt{\log n \log \log n})}.$$

This recurrence solves to $D_n \leq 2^{O(\sqrt{\log n \log \log n})}$ as proven in [OR07].

Concluding, to complete a step of the recursion, it is sufficient to embed the metric given by d_n^* into ℓ_1 with a polylogarithmic distortion. Recall that d_n^* is the distance of the metric $\bigoplus_{b_i} \bigoplus_{b_i} \log^{O(n)}$ TEMD, and thus, one just needs to embed TEMD into ℓ_1. Indeed, Ostrovsky and Rabani show how to embed a relaxed (but sufficient) version of TEMD into ℓ_1 with $O(\log n)$ distortion, yielding the desired embedding ϕ_n, which approximates d_n^* up to a $O(\log n)$ factor at each level of recursion. We note that the required dimension is $\tilde{O}(n)$.

3 Proof of the Main Theorem

We now describe our general approach. Fix $x \in \{0,1\}^n$. For each substring σ of x, we construct a low-dimensional vector v_{σ} such that, for any two substrings σ, τ of the same length, the edit distance between σ and τ is approximated by the ℓ_1 distance between the vectors v_{σ} and v_{τ}. We note that the embedding is non-oblivious: to construct vectors v_{σ} we need to know all the substrings of x in advance (akin to Bourgain’s embedding guarantee). We also note that computing such vectors is enough to solve the problem of approximating the edit distance between two strings, x and y. Specifically, we apply this procedure to the string $x' = x \circ y$, the concatenation of x and y, and then compute the ℓ_1 distance between the vectors corresponding to x and y, substrings of x'.

More precisely, for each length $m \in W$, for some set $W \subset [n]$ specified later, and for each substring $x[i : i + m - 1]$, where $i = 1, \ldots, n - m + 1$, we compute a vector $v_{i \sigma}^{(m)}$ in ℓ_1^O, where $\alpha = 2\tilde{O}(\sqrt{\log n})$. The construction is inductive: to compute vectors $v_{i \sigma}^{(m)}$, we use vectors $v_{i \sigma}^{(l)}$ for $l \ll m$ and $l \in W$. The general approach of our construction is based on the analysis of the recursive step of Ostrovsky and Rabani, described in Section 2. In particular, our vectors $v_{i \sigma}^{(m)} \in \ell_1$ will also approximate the d_m^* distance (given in Equation (2)) with sets S_i^O defined using vectors $v_{i \sigma}^{(l)}$ with $l \ll m$.

The main challenge is to process one level (vectors $v_{i \sigma}^{(m)}$ for a fixed m) in near-linear time. Besides the computation time itself, a fundamental difficulty in applying the approach of Ostrovsky and Rabani directly is that their embedding would give a much higher dimension α, proportional to $\tilde{O}(m)$. Thus, if we were to use their embedding, even storing all the vectors would take quadratic space.

To overcome this last difficulty, we settle on non-obliviously embedding the set of substrings $x[i : i + m - 1]$ for $i \in [n - m + 1]$ under the “ideal” distance d_m^* with $\log^{O(1)} n$ distortion (formally, under the distance d_m^* from Equation (2), when $S_i^O(x[i : i + m - 1]) = \{v_{i+j}^{(l-z)} \mid z \in [s]\}$) for $l = m/2\sqrt{\log n \log \log n}$. Existentially, we know that there exist vectors $w_{i \sigma}^{(m)} \in \mathbb{R}^{O(\log^2 n)}$ such that $\|w_{i \sigma}^{(m)} - w_{j \tau}^{(m)}\|_1$ approximates $d_m^*(x[i : i + m - 1], x[j : j + m - 1])$ for all i and j — this follows by the standard Bourgain’s embedding [Bou85]. The vectors $v_{i \sigma}^{(m)}$ that we compute approximate the
properties of the ideal vectors $w_i^{(m)}$. Their efficient computability comes at the cost of an additional polylogarithmic loss in approximation.

The main building block is the following theorem. It shows how to approximate the TEMD distance for the desired sets S_j^n.

Theorem 3.1. Let $n \in \mathbb{N}$ and $s \in [n]$. Let v_1, \ldots, v_n be vectors in $\{-M, \ldots, M\}^\alpha$, where $M = n^{O(1)}$ and $\alpha \leq n$. Define sets $A_i = \{v_i, v_{i+1}, \ldots, v_{i+s-1}\}$ for $i \in [n - s + 1]$.

Let $t = O(\log^2 n)$. We can compute (randomized) vectors $q_i \in \ell^t$ for $i \in [n - s + 1]$ such that for any $i, j \in [n - s + 1]$, with high probability, we have

$$\text{TEMD}(A_i, A_j) \leq \|q_i - q_j\|_1 \leq \text{TEMD}(A_i, A_j) \cdot \log^O(1) n.$$

Furthermore, computing all vectors q_i takes $\tilde{O}(n\alpha)$ time.

To map the statement of this theorem to the above description, we mention that, for each $t = m/b$ for $m \in W$, we apply the theorem to vectors $(v_i^{(l - s + 1)})_{i \in [n - l + s]}$ for each $s = 1, 2, 4, 8, \ldots, 2^{\log_2 t}$.

We prove Theorem 3.1 in later sections. Once we have Theorem 3.1, it becomes relatively straightforward (albeit a bit technical) to prove the main theorem, Theorem 1.1. We complete the proof of Theorem 1.1 next, assuming Theorem 3.1.

of Theorem 1.1. We start by appending y to the end of x; we will work with the new version of x only. Let $b = 2^{\log^2 n \log \log n}$ and $\alpha = O(b \log^3 n)$. We construct vectors $v_i^{(m)} \in \mathbb{R}^\alpha$ for $m \in W$, where $W \subset [n]$ is a carefully chosen set of size $2^{O(\log^2 n \log \log n)}$. Namely, W is the minimal set such that: $n \in W$, and, for each $i \in W$ with $i \geq b$, we have that $i/b - 2^j + 1 \in W$ for all integers $j \leq \lfloor \log_2 i/b \rfloor$. It is easy to show by induction that the size of W is $2^{O(\log^2 n \log \log n)}$. We construct the vectors $v_i^{(m)}$ inductively in a bottom-up manner. We use vectors for small m to build vectors for large m. W is exactly the set of lengths m that we need in the process.

Fix an $m \in W$ such that $m \leq b^2 = 2^{\log^2 n \log \log n}$. We define the vector $v_i^{(m)}$ to be equal to $h_m(x[i : i + m - 1])$, where $h_m : \{0, 1\}^m \to \{0, 1\}^\alpha$ is a randomly chosen function. It is readily seen that $\|v_i^{(m)} - v_j^{(m)}\|_1$ approximates $\text{ed}(x[i : i + m - 1], x[j : j + m - 1])$ up to $b^2 = 2^{2 \log^2 n \log \log n}$ approximation factor, for each $i, j \in [n - m + 1]$.

Now consider $m \in W$ such that $m > b^2$. Let $l = m/b$. First we construct vectors approximating TEMD on sets $A_i^{m,s} = \{v_i^{(l - s + 1)} \mid z = 0, \ldots, s - 1\}$, where $s = 1, 2, 4, 8, \ldots, l$ and $i \in [n - l + s]$. In particular, for a fixed $s \in \lfloor l \rfloor$ equal to a power of 2, we apply Theorem 3.1 to the set of vectors $(v_i^{(l - s + 1)})_{i \in [n - l + s]}$ obtaining vectors $(q_i^{(m,s)})_{i \in [n - l + 1]}$. Theorem 3.1 guarantees that, for each $i, j \in [n - l + 1]$, the value $\|q_i^{(m,s)} - q_j^{(m,s)}\|_1$ approximates $\text{TEMD}(A_i^{m,s}, A_j^{m,s})$ up to a factor of $\log^O(1) n$. We can then use these vectors $q_i^{(m,s)}$ to obtain the vectors $v_i^{(m)} \in \mathbb{R}^\alpha$ that approximate the “idealized” distance d_m^* on substrings $x[i : i + m - 1]$, for $i \in [n - m + 1]$. Specifically, we let the vector $v_i^{(m)}$ be a concatenation of vectors $q_i^{(m,s)}$, where $j \in [b]$, and s goes over all powers of 2 less than l:

$$v_i^{(m)} = \left(q_i^{(m,s)}\right)_{s = 2^j \leq l, j \in \mathbb{N}}.$$

7
Then, the vectors $v_i^{(m)}$ approximate the distance d_{m}^i (given in Equation (2)) up to a $\log^O(1) n$ approximation factor, with the sets $S_j^x(i = i + m - 1)$ taken as

$$S_j^x(i = i + m - 1) = A_{i+(j-1)i}^{m,s} = \left\{ v_i^{(l-s+1)} \right\},$$

for $i \in [n - m + 1]$ and $j \in [b]$.

The algorithm finishes by outputting $\|v_1^{(n)} - v_{n+1}^{(n)}\|$, which is an approximation to the edit distance between $x[1 : n]$ and $x[n+1 : 2n] = y$. The total running time is $O(|W| \cdot n \cdot bO(1) \cdot \log^O(1) n) = n \cdot 2^{O(\sqrt{\log n \log \log n})}$.

It remains to analyze the resulting approximation. Let D_m be the approximation achieved by vectors $v_i^{(k)} \in \ell_1$ for substrings of x of lengths k, where $k \in W$ and $k \leq m$. Then, using Fact 2.1 and the fact that vectors $v_i^{(m)} \in \ell_1$ approximate d_{m}^i, we have that

$$D_m \leq \log^O(1) n \cdot \left(D_{m/b} + 2^{\sqrt{\log n \log \log n}} \right).$$

Since the total number of recursion levels is bounded by $\log_b n = \sqrt{\log n \log \log n}$, we deduce that $D_n = 2^{O(\sqrt{\log n \log \log n})}$.

3.1 Proof of Theorem 3.1

The proof proceeds in two stages. In the first stage we show an embedding of the TEMD metric into a low-dimensional space. Specifically, we show an (oblivious) embedding of TEMD into a min-product of ℓ_1. Recall that the min-product of ℓ_1, denoted \bigoplus_{ℓ_1}, is a semi-metric where the distance between two l-by-k vectors $x, y \in \mathbb{R}^{l \times k}$ is $d_{\text{min}}(x, y) = \min_{i \in [l]} \left\{ \sum_{j \in [k]} |x_{i,j} - y_{i,j}| \right\}$. Our min-product of ℓ_1’s has dimensions $l = O(\log n)$ and $k = O(\log^3 n)$. The min-product can be seen as helping us on two fronts: one is the embedding of TEMD into ℓ_1 (of initially high-dimension), and another is a weak dimensionality reduction in ℓ_1, using Cauchy projections. Both of these embeddings are of the following form: consider a randomized embedding f into (standard) ℓ_1 that has no contraction (w.h.p.) but the expansion is bounded only in the expectation (as opposed to w.h.p.). To obtain a “w.h.p.” expansion, one standard approach is to sample f many times and concentrate the expectation. This approach, however, will necessitate a high number of samples of f, and thus yield a high final dimension. Instead, the min-product allows us to take only $O(\log n)$ independent samples of f.

We note that our embedding of TEMD into min-product of ℓ_1, denoted λ, is linear in the sets A: $\lambda(A) = \sum_{a \in A} \lambda(\{a\})$. The linearity allows us to compute the embedding of sets A_i in a streaming fashion: the embedding of A_{i+1} is obtained from the embedding of A_i with $\log^O(1) n$ additional processing. This stage appears in Section 3.1.1.

In the second stage, we show that, given a set of n points in min-product of ℓ_1’s, we can (non-obliviously) embed these points into low-dimensional ℓ_1 with $O(\log n)$ distortion. The time required is near-linear in n and the dimensions of the min-product of ℓ_1’s.

To accomplish this step, we start by embedding the min-product of ℓ_1’s into a min-product of tree metrics. Next, we show that n points in the low-dimensional min-product of tree metrics can be embedded into a graph metric supported by a sparse graph. We note that this is in general not possible, with any (even non-constant) distortion. We show that this is possible when we
assume that our subset of the min-product of tree metrics approximates some actual metric (in our case, the min-product approximates the TEMD metric). Finally, we observe that we can implement Bourgain's embedding in near-linear time on a sparse graph metric. This stage appears in Section 3.1.2.

We conclude with the proof of Theorem 3.1 in Section 3.1.3.

3.1.1 Embedding EMD into min-product of ℓ_1

In the next lemma, we show how to embed TEMD into a min-product of ℓ_1's of low dimension. Moreover, when the sets A_i are obtained from a sequence of vectors v_1, \ldots, v_n, by taking $A_i = \{v_i, \ldots, v_i+s-1\}$, we can compute the embedding in near-linear time.

Lemma 3.2. Fix $n, M \in \mathbb{N}$ and $s \in [n]$. Suppose we have n vectors v_1, \ldots, v_n in $\{-M, -M + 1, \ldots, M\}^\alpha$ for some $\alpha \leq n$. Consider the sets $A_i = \{v_i, v_{i+1}, \ldots, v_{i+s-1}\}$, for $i \in [n - s + 1]$.

Let $k = O(\log^3 n)$. We can compute (randomized) vectors $q_i \in \ell_1^k$ for $i \in [n - s + 1]$ such that, for any $i, j \in [n - s + 1]$ we have that

- $\Pr\left[\|q_i - q_j\|_1 \leq \text{TEMD}(A_i, A_j) \cdot O(\log^2 n)\right] \geq 0.1$ and
- $\|q_i - q_j\|_1 \geq \text{TEMD}(A_i, A_j)$ w.h.p.

The computation time is $\tilde{O}(n\alpha)$.

Thus, we can embed the TEMD metric over sets A_i into $\varTheta_{\min}^\ell_1\psi_i$ for $l = O(\log n)$, such that the distortion is $O(\log^2 n)$ w.h.p. The computation time is $\tilde{O}(n\alpha)$.

Proof. First, we show how to embed TEMD metric over the sets A_i into ℓ_1 of dimension $M^{O(\alpha)} \cdot O(\log n)$. For this purpose, we use a slight modification of the embedding of [AIK08] (it can also be seen as a strengthening of the TEMD embedding of Ostrovsky and Rabani).

The embedding of [AIK08] constructs $m = O(\log s)$ embeddings ψ_i, each of dimension $h = M^{O(\alpha)}$, and then the final embedding is just the concatenation $\psi = \psi_1 \circ \psi_2 \circ \ldots \circ \psi_m$. For $i = 1, \ldots, m$, we impose a randomly shifted grid of side-length $R_i = 2^{s-2}$. That is, let $\Delta_i = (\delta_{i,1}, \ldots, \delta_{i,\alpha})$ be selected uniformly at random from $[0, 1)^\alpha$. A specific vector v_j falls into the cell (c_1, \ldots, c_α), where $c_t = [v_{j,t}/R_i + \delta_{i,t}]$ for $t = 1, \ldots, \alpha$. Then ψ_i has a coordinate for each cell (c_1, \ldots, c_α), where $0 \leq c_t \leq 2M/R_i + 1$ for $t = 1, \ldots, \alpha$. These are the only cells that can be non-empty, and there is at most $(2M/R_i + 1)^\alpha = M^{O(\alpha)}$ of them. The value of a specific coordinate, for a set A, equals the number of vectors from A falling into the corresponding cell times R_i. Now, if we scale ψ up by a factor of $\Theta(\frac{1}{s}\log n)$, Theorem 3.1 from [AIK08]\(^5\) says that the vectors $q_i' = \psi(A_i)$ satisfy the condition that, for any $i, j \in [n - s + 1]$, we have:

- $E\left[\|q_i' - q_j'\|_1\right] \leq \text{TEMD}(A_i, A_j) \cdot O(\log^2 n)$ and
- $\|q_i' - q_j'\|_1 \geq \text{TEMD}(A_i, A_j)$ w.h.p.

Thus, the vectors q_i' satisfy the promised properties except they have a high dimension.

To reduce the dimension of q_i''s, we apply a weak ℓ_1 dimensionality reduction via 1-stable (Cauchy) projections. Namely, we pick a random matrix P of size $k = O(\log^3 n)$ by $mh = O(\log s)$.

\(^5\)Note that Theorem 3.1 from [AIK08] is stated for EMD, and here we are concerned with TEMD. Nevertheless, the whole statement still applies, because the side of the largest grid is bounded by $O(s)$.

9
$M^{O(\alpha)}$, the dimension of ψ, where each entry is distributed according to the Cauchy distribution, which has probability distribution function $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$. Now define $q_i = P \cdot q_i^* \in \ell^k_1$. Standard properties of the ℓ_1 dimensionality reduction guarantee that the vectors q_i satisfy the properties promised in the lemma statement, after an appropriate rescaling (see Theorem 5 of [Ind06] with $\epsilon = 1/2$, $\gamma = 1/6$, and $\delta = n^{-O(1)}$).

It remains to show that we can compute the vectors q_i in $O(n\alpha)$ time. To this end, observe that the resulting embedding $P \cdot \psi(A)$ is linear, namely $P \cdot \psi(A) = \sum_{a \in A} P \cdot \psi(\{a\})$. Moreover, each $P \cdot \psi(\{v_i\})$ can be computed in $\alpha \cdot \log^{O(1)} n$ time, because $\psi(\{v_i\})$ has exactly one non-zero coordinate, which can be computed in $O(\alpha)$ time, and then $P \cdot \psi(\{v_i\})$ is simply the corresponding column of P multiplied by the non-empty coordinate of $\psi(\{v_i\})$. To obtain the first vector q_1, we compute the summation of all corresponding $P \cdot \psi(\{v_i\})$. To compute the remaining vectors q_i iteratively, we use the idea of a sliding window over the sequence v_1, \ldots, v_n. Specifically, we have

$$q_{i+1} = P \cdot \psi(A_{i+1}) = P \cdot \psi(A_i \cup \{v_{i+s} \setminus \{v_i\}) = q_i + P \cdot \psi(\{v_{i+s}\}) - P \cdot \psi(\{v_i\}),$$

which implies that q_{i+1} can be computed in $\alpha \cdot \log^{O(1)} n$ time, given the value of q_i. Therefore, the total time required to compute all q_i’s is $O(n\alpha \cdot \log^{O(1)} n)$.

Finally, we show how we obtain an efficient embedding of TEMD into min-product of ℓ_1’s. We apply the above procedure $l = O(\log n)$ times. Let $q_i^{(z)}$ be the resulting vectors, for $i \in [n-s+1]$ and $z \in [l]$. The embedding of a set A_i is the concatenation of the vectors $q_i^{(z)}$, namely $Q_i = (q_i^{(1)}, q_i^{(2)}, \ldots, q_i^{(l)}) \in \bigoplus_{\min}^l \ell^k_1$. The Chernoff bound implies that w.h.p., for any $i, j \in [n-s+1]$, we have that

$$d_{\text{min},1}(Q_i, Q_j) = \min_{z \in [l]} \|q_i^{(z)} - q_j^{(z)}\| \leq \text{TEMD}_s(A_i, A_j) \cdot O(\log^2 n).$$

Also, $d_{\text{min},1}(Q_i, Q_j) \geq \text{TEMD}_s(A_i, A_j)$ w.h.p. trivially. Thus the vectors Q_i are an embedding of the TEMD metric on A_i’s into $\bigoplus_{\min}^l \ell^k_1$ with distortion $O(\log^2 n)$ w.h.p.\[\square\]

3.1.2 Embedding of min-product of ℓ_1 into low-dimensional ℓ_1

In this section, we show that n points Q_1, \ldots, Q_n in the semi-metric space $\bigoplus_{\min}^l \ell^k_1$ can be embedded into ℓ_1 of dimension $O(\log^2 n)$ with distortion $\log^{O(1)} n$. The embedding works under the assumption that the semi-metric on Q_1, \ldots, Q_n is a $\log^{O(1)} n$ approximation of some metric. We start by showing that we can embed a min-product of ℓ_1’s into a min-product of tree metrics.

Lemma 3.3. Fix $n, M \in \mathbb{N}$ such that $M = n^{O(1)}$. Consider n vectors v_1, \ldots, v_n in $\bigoplus_{\min}^l \ell^k_1$, for some $l, k \in \mathbb{N}$, where each coordinate of each v_i lies in the set $\{-M, \ldots, M\}$. We can embed these vectors into a min-product of $O(l \cdot \log^2 n)$ tree metrics, i.e., $\bigoplus_{\min}^{O(l \log^2 n)} \text{TM}$, incurring distortion $O(\log n)$ w.h.p. The computation time is $O(n \cdot kl)$.

Proof. We consider all thresholds 2^t, for $t \in \{0, 1, \ldots, \log M\}$. For each threshold 2^t, and for each coordinate of the min-product (i.e., ℓ^k_1), we create $O(\log n)$ tree metrics. Each tree metric is independently created as follows. We again use randomly shifted grids. Specifically, we define a hash function $h: \ell^k_1 \rightarrow \mathbb{Z}^k$ as

$$h(x_1, \ldots, x_k) = \left(\left\lfloor \frac{x_1 + u_1}{2^t} \right\rfloor, \left\lfloor \frac{x_2 + u_2}{2^t} \right\rfloor, \ldots, \left\lfloor \frac{x_k + u_k}{2^t} \right\rfloor\right),$$

where $u_1, \ldots, u_k \sim \mathcal{N}(0, 1)$. \[\square\]
where each u_i is chosen at random from $[0, 2^t)$. We create each tree metric so that the nodes corresponding to the points hashed by h to the same value are at distance 2^t (this creates a set of stars), and each pair of points that are hashed to different values are at distance $2MK$ (we connect the roots of the stars).

For two points $x, y \in \ell^d_t$, the probability that they are separated by the grid in the i-th dimension is at most $|x_i - y_i|/2^t$, which implies by the union bound that

$$\Pr_h[h(x) = h(y)] \geq 1 - \sum_i \frac{|x_i - y_i|}{2^t} = 1 - \frac{\|x - y\|_1}{2^t}.$$

On the other hand, the probability that x and y are not separated by the grid in the i-th dimension is $\max(1 - |x_i - y_i|/2^t, 0) \leq e^{-|x_i - y_i|/2^t}$. Since the grid is shifted independently in each dimension, we have

$$\Pr_h[h(x) = h(y)] \leq \prod_{i=1}^k e^{-|x_i - y_i|/2^t} = e^{-\sum_{i=1}^k |x_i - y_i|/2^t} = e^{-\|x - y\|_1/2^t}.$$

By the Chernoff bound, if $x, y \in \ell^d_t$ are at distance at most 2^t for some t, they will be at distance at most 2^t+1 in one of the tree metrics with high probability. On the other hand, let v_i and v_j be two input vectors at distance greater than 2^t. The probability that they are at distance smaller than $2^t/c\log n$ in any of the $O(\log^2 n)$ tree metrics, is at most n^{-c+1} for any $c > 0$, by the union bound.

Therefore, we multiply the weights of all edges in all trees by $O(\log n)$ to achieve a proper (non-contracting) embedding.

We now show that we can embed a subset of the min-product of tree metrics into a graph metric, assuming the subset is close to a metric.

Lemma 3.4. Consider a semi-metric $M = (X, \xi)$ of size n in $\bigoplus_{\text{min}}^l TM$ for some $l \in \mathbb{N}$, where each tree metric in the product is of size $O(n)$. Suppose M is a γ-near metric (i.e., it is embeddable into a metric with γ distortion). Then we can embed M into a connected weighted graph with $O(nl)$ edges with distortion γ in $O(nl)$ time.

Proof. We consider l separate trees each on $O(n)$ nodes, corresponding to each of l dimensions of the min-product. We identify the nodes of trees that correspond to the same point in the min-product, and collapse them into a single node. The graph we obtain has at most $O(nl)$ edges. Denote the shortest-path metric it spans with $M' = (V, \rho)$, and denote our embedding with $\phi : X \to V$. Clearly, for each pair u, v of points in X, we have $\rho(\phi(u), \phi(v)) \leq \xi(u, v)$. If the distance between two points shrinks after embedding, then there is a sequence of points $w_0 = u, w_1, \ldots, w_{k-1}$, $w_k = v$ such that $\rho(\phi(u), \phi(v)) = \xi(w_0, w_1) + \xi(w_1, w_2) + \cdots + \xi(w_{k-1}, w_k)$. Because M is a γ-near metric, there exists a metric $\xi^* : X \times X \to [0, \infty)$, such that $\xi^*(x, y) \leq \xi(x, y) \leq \gamma \cdot \xi^*(x, y)$, for all $x, y \in X$. Therefore,

$$\rho(\phi(u), \phi(v)) = \sum_{i=0}^{k-1} \xi(w_i, w_{i+1}) \geq \sum_{i=0}^{k-1} \xi^*(w_i, w_{i+1}) \geq \xi^*(w_0, w_k) = \xi^*(u, v) \geq \xi(u, v)/\gamma.$$

Hence, it suffices to multiply all edge weights of the graph by γ to achieve a non-contractive embedding. Since there was no expansion before, it is now bounded by γ.

11
We now show how to embed the shortest-path metric of a graph into a low dimensional ℓ_1-space in time near-linear in the graph size. For this purpose, we implement Bourgain’s embedding [Bou85] in near-linear time. We use the following version of Bourgain’s embedding, which follows from the analysis in [Mat02].

Lemma 3.5 (Bourgain’s embedding [Mat02]). Let $M = (X, \rho)$ be a finite metric on n points. There is an algorithm that computes an embedding $f : X \rightarrow \ell_1^t$ of M into ℓ_1^t for $t = O(\log^2 n)$ such that, with high probability, for each $u, v \in X$, we have $\rho(u, v) \leq \|f(u) - f(v)\|_1 \leq \rho(u, v) \cdot O(\log n)$.

Specifically, for coordinate $i \in [k]$ of f, the embedding associates a nonempty set $A_i \subseteq X$ such that $f(u)_i = \rho(u, A_i) = \min_{a \in A_i} \rho(u, a)$. Each A_i is samplable in linear time.

The running time of the algorithm is $O(g(n) \cdot \log^2 n)$, where $g(n)$ is the time necessary to compute the distance of all points to a given fixed subset of points.

Lemma 3.6. Consider a connected graph $G = (V, E)$ on n nodes with m edges and a weight function $w : E \rightarrow [0, \infty)$. There is a randomized algorithm that embeds the shortest path metric of G into $\ell_1^{O(\log^2 n)}$ with $O(\log n)$ distortion, with high probability, in $O(m \log^3 n)$ time.

Proof. Let $\psi : V \rightarrow \ell_1^{O(\log^2 n)}$ be the embedding given by Lemma 3.5. For any nonempty subset $A \subseteq V$, we can compute $\rho(v, A)$ for all $v \in V$ by Dijkstra’s algorithm in $O(m \log n)$ time. The total running time is thus $O(m \log^3 n)$. \hfill\Box

3.1.3 Finalization of the proof of Theorem 3.1

We first apply Lemma 3.2 to embed the sets A_i into $\bigoplus_{k=1}^{O(\log n)} \ell_1^k$ with distortion at most $O(\log^2 n)$ with high probability, where $k = O(\log^3 n)$. We write $v_i, i \in [n - s + 1]$, to denote the embedding of A_i. Note that the TEMD distance between two different A_i’s is at least $1/s \geq 1/n$, and so is the distance between two different v_i’s. We multiply all coordinates of v_i’s by $2kn = \tilde{O}(n)$ and round them to the nearest integer. This way we obtain vectors v'_i with integer coordinates in $\{-2knM - 1, \ldots, 2knM + 1\}$. Consider two vectors v_i and v_j. Let D be their distance, and let D' be the distance between the corresponding v'_i and v'_j. We claim that $knD \leq D' \leq 3knD$, and it suffices to show this claim for $v_i \neq v_j$, in which case we know that $D \geq 1/n$. Each coordinate of the min-product is ℓ_1^k, and we know that in each of the coordinates the distance is at least D. Consider a given coordinate of the min-product, and let d and d' be the distance before and after the scaling and rounding, respectively. On the one hand,

$$
\frac{d'}{d} \geq \frac{2kn d - k}{d} \geq 2kn - \frac{k}{D} \geq 2kn - kn = kn,
$$

and on the other,

$$
\frac{d'}{d} \leq \frac{2kn + k}{d} \leq 2kn + \frac{k}{D} \leq 2kn + kn = 3kn.
$$

Therefore, in each coordinate, the distance gets scaled by a factor in the range $[kn, 3kn]$. We now apply Lemma 3.3 to v'_i’s and obtain their embedding into a min-product of tree metrics. Then, we divide all distances in the trees by kn, and achieve an embedding of v_i’s into a min-product of trees with distortion at most 3 times larger than that implied by Lemma 3.3, which is $O(\log n)$.

The resulting min-product of tree metrics need not be a metric, but it is a γ-near metric, where $\gamma = O(\log^3 n)$ is the expansion incurred so far. We therefore embed the min-product of tree metrics
into the shortest-path metric of a weighted graph by using Lemma 3.4 with expansion at most γ. Finally, we embed this metric into a low dimensional ℓ_1 metric space with distortion $O(\log^2 n)$ by using Lemma 3.6.

4 Applications

We now present two applications mentioned in the introduction: sublinear-time approximation of edit distance, and approximate pattern matching under edit distance.

4.1 Sublinear-time approximation

We now present a sublinear-time algorithm for distinguishing pairs of strings with small edit distance. Let x, y be the two strings. The algorithm partitions them into blocks \tilde{x}_i and \tilde{y}_i of the same length such that $x = \tilde{x}_1 \ldots \tilde{x}_b$ and $y = \tilde{y}_1 \ldots \tilde{y}_b$. Then it selects a few random i, and for each of them, it compares \tilde{x}_i to \tilde{y}_i. If it finds an i for which \tilde{x}_i and \tilde{y}_i are very different, the distance between x and y is likely to be large. Otherwise, if no such i is detected, the edit distance between x and y is likely to be small. Our edit distance algorithm is used for approximating the distance between specific \tilde{x}_i and \tilde{y}_i.

Theorem 4.1. Let α and β be two constants such that $0 \leq \alpha < \beta \leq 1$. There is an algorithm that distinguishes pairs of strings with edit distance $O(n^{\alpha})$ from those with distance $\Omega(n^{\beta})$ in time $n^{\alpha + 2(1-\beta) + o(1)}$.

Proof. Let $f(n) = 2^{O(\sqrt{\log n \log \log n})}$ be a non-decreasing function that bounds the approximation factor of the algorithm given by Theorem 1.1. Let $b = \frac{n^{\beta - \alpha}}{f(n) \log n}$. We partition the input strings x and y into b blocks, denoted \tilde{x}_i and \tilde{y}_i for $i \in [b]$, of length n/b each.

If $ed(x, y) = O(n^{\alpha})$, then $\max_i ed(\tilde{x}_i, \tilde{y}_i) \leq ed(x, y) = O(n^{\alpha})$. On the other hand, if $ed(x, y) = \Omega(n^{\beta})$, then $\max_i ed(\tilde{x}_i, \tilde{y}_i) \geq ed(x, y)/b = \Omega(n^{\alpha} \cdot f(n) \cdot \log n)$. Moreover, the number of blocks i such that $ed(\tilde{x}_i, \tilde{y}_i) \geq ed(x, y)/2b = \Omega(n^{\alpha} \cdot f(n) \cdot \log n)$ is at least

$$\frac{ed(x, y) - b \cdot ed(x, y)/2b}{n/b} \geq \Omega(n^{\beta - 1} \cdot b).$$

Therefore, we can tell the two cases apart with constant probability by sampling $O(n^{1-\beta})$ pairs of blocks $(\tilde{x}_i, \tilde{y}_i)$ and checking if any of the pairs is at distance $\Omega(n^{\alpha} \cdot f(n) \cdot \log n)$. Since for each such pair of strings, we only have to tell edit distance $O(n^{\alpha})$ from $\Omega(n^{\alpha} \cdot f(n) \cdot \log n)$, we can use the algorithm of Theorem 1.1. We amplify the probability of success of that algorithm in the standard way by running it $O(\log n)$ times. The total running time of the algorithm is $O(n^{1-\beta}) \cdot O(\log n) \cdot (n/b)^{1+o(1)} = O(n^{\alpha + 2(1-\beta) + o(1)}).$
algorithm by running it $O(\log N)$ times and selecting the median of the returned values. The running time of the algorithm is $O(N \log N) \cdot 2^{O(\sqrt{\log n \log \log n})}$.

The distance between each of the substrings and the pattern is approximate up to a factor of $2^{O(\sqrt{\log n \log \log n})}$, and can be used both for finding approximate occurrences of P in T, and for finding a substring of T that is approximately closest to P.

Acknowledgment

The authors thank Piotr Indyk for helpful discussions, and Robert Krauthgamer, Sofya Raskhodnikova, Ronitt Rubinfeld, and Rahul Sami for early discussions on near-linear algorithms for edit distance.

References

