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Abstract machines, trying to find open ports which could be lever-

aged for further attacks. In contrast, typical interneffita

We give near-optimal sketching and streaming algorithms is directed to a small number of heavily used ports for web
for estimating Shannon entropy in the most general stream-traffic, email delivery, etc. Consequently, when a port scan

ing model, with arbitrary insertions and deletions. This ning attack is underway, there is a significant change in the
improves on prior results that obtain suboptimal space distribution of port numbers in the packets being delivered

bounds in the general model, and near-optimal bounds in It has been shown that measuring the entropy of the distri-
the insertion-only model without sketching. Our high-leve bution of port numbers provides an effective means to detect
approach is simple: we give algorithms to estimate Tsallis such attacks. See Lakhina et al. [20] and Xu et al. [38] for
entropy, and use them to extrapolate an estimate of Shan{further information about such problems and methods for
non entropy. The accuracy of our estimates is proven us-their solution.

ing approximation theory arguments and extremal proper-
ties of Chebyshev polynomials. Our work also yields the
best-known and near-optimal additive approximations for
entropy, and hence also for conditional entropy and mutual
information.

Our Techniques. In this paper, we give an algorithm for
estimating empirical Shannon entropy while using space
nearly optimal in terms of the desired estimation accuracy.
Our algorithm is actually a sketching algorithm, not just a
streaming algorithm, and it applies to general streamshwhic
allow insertions and deletions of elements. One attractive
1 Introduction aspect of our work is _its c_Iean high-level approach: we
reduce the entropy estimation problem to the well-studied
Streaming algorithms have attracted much attention in frequency moment prob]em_ More Concrete|y’ we give al-
several computer science communities, notably theory,qgorithms for estimating Tsallis entropy, which is closay r
databases, and networking. Many algorithmic problems in |ated to frequency moments. The link to Shannon entropy is
this model are now well-understood, for example, the prob- established by proving bounds on the rate at which Tsallis
|em Of estimating frequency moments [1, 2, 12, 19, 34, 37] entropy Converges to Shannon entropy_
More recently, several researchers have studied the proble  The fyll version of this paper establishes similar results
of estimating the empirical entropy of a stream [4, 7, 8, 14, oy the convergence of Rényi entropy to Shannon entropy.
15, 39]. Remarkably, it seems that such an analysis was not previ-
Motivation. Entropy is a fundamentally important quantity ously known.
that can be used to measure information content, the uncer- There are several technical obstacles that arise with this
tainty of a random variable, or the compressibility of a text approach. Unfortunately, it does not seem that the optimal
It also finds several practical applications in computer net amount of space can be obtained while using just a single
working, such as network anomaly detection. Let us con- estimate of Tsallis entropy. We overcome this obstacle by
sider a concrete example. One form of malicious activity on using several estimates, together with approximation the-
the internet iort scanningin which attackers probe target ory arguments and certain extremal properties of Cheby-
*An early version of this work that presented a simpler aldoni ap- shev pOIynom.IaIS' TO our knowledge, this I.S the f|r§t use
peared in the IEEE Information Theory Workshop [16]. of such techniques in the context of streaming algorithms,
fSupported in part by a Natural Sciences and EngineeringaRese  and it seems likely that these techniques could be appécabl
Council of Canada PGS Scholarship, by NSF contract CCF-2BILAand to many other prob|em5_

by ONR grant NO0014-05-1-0148. . . . )
fSupported by a National Defense Science and EngineerinduGta Such arguments yleld gOOd algorlthms for addltlvely es

(NDSEG) Fellowship. timating entropy, but obtaining a good multiplicative ap-
§Supported in part by NSF grant 0514771. proximation is more difficult when the entropy is very




small.

In such a scenario, there is necessarily a veryAdditive Entropy Estimation. Additive approximations

heavy element, and the task that one must solve is to esof entropy are also useful, as they directly yield additive

timate the moment of all elemenggcludingthis heavy el-
ement. This task has become known as résidual mo-
ment estimation problem, and it is emerging as a useful
building block for other streaming problems [4, 6, 12].
To estimate thex™" residual moment forr € (0,2], we
show thatO(e~2logm) bits"'? of space suffice with a
random oracle and(s~2log® m) bits without. Here we
use the notationf(m,e) = O(g(m,e)) if f(m,e) =
O(g(m, £)(loglogm +log(1/¢))°™M). In comparison, ex-
isting algorithms use (s 2 log® m) bits fora = 2 [13],
andO(s?logm) for a = 1 [12]. No non-trivial algo-
rithms were previously known for ¢ {1,2}. That said,

approximations of conditional entropy and mutual infor-
mation, which cannot be approximated multiplicatively in
small space [18]. Chakrabarti et al. [7] noted that since
Shannon entropy is bounded abovelbym, a multiplica-
tive (1 + (¢/logm)) approximation yields an additive:
approximation. In this way, the work of Chakrabarti et
al. [7] and Bhuvanagiri and Ganguly [4] yield additize
approximations using)(¢ 2 log® m) and O (¢~ log” m)
words of space respectively. Our algorithm yields an ad-
ditive ¢ approximation using onlﬁ(g—2 logm) words of
space. In particular, our space bounds for multiplicative
and additive approximation differ by onlypglog m fac-

the previously known algorithms were more general in ways tors. Zhao et al. [39] give practical methods for additively

irrelevant to our work: they can remove theheaviest ele-
ments without requiring that they are sufficiently heavy.

Multiplicative Entropy Estimation. Let us now state the

performance of the entropy estimation algorithms more ex-

plicitly. We focus exclusively on single-pass algorithms
unless otherwise noted. The first algorithms for approxi-

estimating the so-called entropy norm of a stream. Their
algorithm can be viewed as a special case of ours since it
interpolates Shannon entropy using two estimates of Tsal-
lis entropy, although this interpretation was seemingly un
known to those authors.

Other Information Statistics. We also give algorithms for

mating entropy in the streaming model are due to Guha etapproximating Rényi [30] and Tsallis [35] entropy. Rényi

al. [15]; they achieved)(¢~2 + logm) words of spacé

entropy plays an important role in expanders, pseudoran-

but assumed a randomly ordered stream. Chakrabartidom generators, quantum computation, and ecology. Tsallis

Do Ba and Muthukrishnan [8] then gave an algorithm for
worst-case ordered streams usifi¢s 2 log” m) words of
space, but required two passes over the input.
gorithm of Chakrabarti, Cormode and McGregor [7] uses
O(e~21ogm) words of space to give a multiplicative+ ¢
approximation, although their algorithm cannot produce

sketches and only applies to insertion-only streams. In con

trast, the algorithm of Bhuvanagiri and Ganguly [4] pro-

vides a sketch and can handle deletions but requires roughl

O(e3log* m) words'.

Our work focuses primarily in thstrict turnstile model
(defined in Section 2), which allows deletions. Our al-
gorithm for multiplicatively estimating Shannon entropy
usesO(c~2logm) words of space. These bounds are
nearly-optimal in terms of the dependence=gsince there
is a lower bound of2(s~2) bits even for insertion-only

entropy is an important quantity in physics that generalize
Boltzmann-Gibbs entropy, and also plays a role in quantum

The al-physics. Rényi and Tsallis entropy are both parameterized

by a scalarx > 0. The efficiency of our estimation algo-
rithms depends on, and is stated precisely in Section 7.

Approximating Entropy from Samples. One conceivable
approach to design a streaming algorithm for approximating
entropy is to leverage the existing work on approximating

¥he entropy of a discrete probability distribution from &d

pendent random samples [3, 25, 26, 29, 36]. It can easily be
shown that in this model it is not possible to obtain a mul-
tiplicative entropy approximation with(m) samples. It is
also known [3, 29, 36] that additive approximation of en-
tropy requires:2(!) samples. Therefore, it seems unlikely
that the sampling approach yields space-efficient stregmin
algorithms.

streams [7]. Our algorithms assume access to a random or-
acle. This assumption can be removed through the use o2 Preliminaries

Nisan’s pseudorandom generator [23], increasing the spacei_et .

bounds by a factor oD (log(m/¢)).

1When giving bounds, we often use the following tilde notatiave
say f(m,e) = O(g(m,e)) if f(m,e) = O(g(m,e)(loglogm +
log(1/¢))0M).

2The length of the stream is denotedand the approximation accuracy
is 1 + e. For precise definitions, see Section 2.

3A word is a string of[log m] bits.

4A recent, yet unpublished improvement by the same authdrsns
proves this ta) (¢ 3 log® m) words.

(Ay,...,A,) € Z" be a vector initialized a8
which is modified by a stream of, updates. Each update
is of the form(i,v), wherei € [n] andv € {—M, ..., M},

and causes the changg — A; + v. For simplicity in
stating bounds, we henceforth assume> n and M =

1; the latter can be simulated by increasimgby a factor

of M and representing an updatg v) with |v| separate
updates (though in actuality our algorithm can perform all
|v| updates simultaneously in the time it takes to do one
update). The vectof gives rise to a probability distribution



r = (z1,...,2,) wWith z; = |4;|/ | All,. Thus for each — T(y) + O(E) — H+0(e).
eitherz; = 0orz; > 1/m. Y

In the strict turnstile modelwe assumed; > 0 for all The third equality holds by choice af since 1/m <
i € [n] atthe end of the stream. In tgeneral update model A, /||A||; < 1. The last equality follows by the mean value
we make no such assumption. For the remainder of this pa-theorem and a bound on the absolute value of the deriva-
per, we assume the strict turnstile model and assume accesive of 7' neary. We prove such a bound in Section 5.2.1.
to a random oracle, unless stated otherwise. Our algorithmsSpecifically, Lemma 5.1 wita = £ andk = 1 shows that
also extend to the general update model, typically increas-the derivativel'")(z) is O(log nlogm) fory < z < 0.

ing bounds by a factor @@(log m). As remarked above, the In Section 5, we improve on this simple algorithm by

random oracle can be removed, using [23], while increasing estimating Tsallis entropy at multiple points. This scheme

the space by anothél(log(m/¢)) factor. is analyzed using certain approximation theory arguments,
We now define some notation. For real > 0, which we discuss in the next section.

the o!" norm of a vectorz € R" is defined||z|, = ) ,
(0 | ™)/ *; also, |||, = {4 : @ #0}|. (Fora e 4 Noisy Extrapolation
[0,1), [|-]l, is not actually a norm in the usual sense.) We |n this section, we describe an extrapolation technique tha

define thex™ momenbf the stream ag, = > |4;|* = lies at the heart of our main streaming algorithms for Shan-
| Al|%. Forz a probability distribution, we define the™ non entropy. Letf : R — R be a continuous function
Renyi entropyas H, = log(||z[|;)/(1 — «) and thea™ that we can evaluate approximately at every point except
Tsallis entropyas T, = (1 — |z|;)/(c — 1). Shan- . Further, suppose that evaluatifi¢y) becomes increas-
non entropyH is defined by = —3>7"  x;logz;. A ingly expensive ag goes to0. We want to approximate
straightforward application of I'Hopital’s rule showsah £(0). Therefore, we approximatgat a few carefully cho-
H = limg—1 Hy = lim,—17T,. Itis often convenient  sen pointsyo, ...,y far from0 and use the achieved values
to focus on the quantity — 1 instead of, so we define  to extrapolate the value of at 0. Letz; = f(y;) + A; be
H(a) = Hi1q andT(a) = T14q- the approximation tg (y;) that we computeA; is the error
We will often need to approximate frequency moments, on approximating (y;). We then compute the only polyno-
for which we use the following: mial p of degree at most such thaip(y;) = z;, and hope

thatp(0) is a good approximation t6(0).

The polynomialp can be decomposed into two polyno-
mialsp; andpa of degree at most such thap = py +pa,
and for each, ps(y;) = f(y:;) andpa(y;) = A;. We have
p(0) = FO) < [ps(0) = £(0)| + |pa(0)]. We analyze
and bound each of the last two terms separately. A standard

Fact 2.1(Indyk [17], Li [21], [22]). There is an algorithm
to compute a multiplicativél +¢)-approximation off, for
anya € (0, 2]. The algorithm succeeds with constant prob-
ability. It usesO(s=2logm) bits of space in the general

update model, an@® (('”E;z” + 1) log m) bits of space in

the strict turnstile model. result on approximation of functions by polynomials can
For any functionz — f(a), we denote its:t" derivative be used to boupd the first term, pro_vidﬁds sufficienjtly
with respect taz by £ (a). smooth. Bounding the second term is one of the main con-
tributions of the paper. It requires a careful choiceypf
3 A Simple Algorithm and employs extremal properties of Chebyshev polynomi-

als. An application of the technique is described in more
As a precursor to our full approach, consider estimating detail in Section 5.2.
Shannon entropy{ by estimating Tsallis entrop¥'(y) = ) )
Ty, for y ~ 0. To do so, we can use Fact 2.1 to compute 4-1 Bounding the First Error Term
Fi.,, a(1 + &)-approximation toF; ,. To be concrete, ~The following standard result on approximation of func-
we choosegy = —O(¢/(lognlogm)) andé = ¢ - y. The tions by polynomials can be used to bound the error due to
space required i® (¢~ log n log m) words. The following use of extrapolation. Recall that the notatipi) denotes
argument shows this gives an addité=) approximation. the k™ derivative off.

With constant probabilityf+, = (1 &)Fi+,. Thenour  Fact 4.1 (Phillips and Taylor [28], Theorem 4.2). Let

estimate is Yo, Y1, - - .y be pointsin the intervdk, b]. Let f : R — R
) be such thatf(") ..., f*) exist and are continuous on
Tly) = 1 {— Fiiy (3.1) [a, ], andf(+1) exists on(a, b). Then, for every € [a, b],
‘ y ||A|[}TY ' there existg, < (a,b) such that

_ 1 Fiyy Exn (AT (T I A ()
~ <1_ ||A||1+y> +23 () f= et = <H (y_'%)> IEE

i=0



wherep¢(y) is the degreé: polynomial obtained by inter-  irrelevant for now, but is used in Section 5 to control how

polating the point$y;, f(v:)),0 <i < k. close they;’s are to0, and consequently the efficiency of
As long asf is sufficiently smooth and has bounded €Stimatingf(y:).
derivatives, ang is not too far from eacly;, the above fact Formally, define
immediately yields a good bound on the extrapolation error.
14
4.2 Bounding the Second Error Term ge(t) = <2k2+1>(’f2 't — (k¥ +1)), and (4.2)

We now show how to bounfba (0)], the error due to the

fact that we learn eaclf(y;) only approximately. The yi = 9e(ik)- (4.3)

careful choice ofyg, y1,. . ., yi and extremal properties of 1N

Chebyshev polynomials are used to lirpit (0)|. We first Note thatg,(1 + z7) = 0 and that

describe properties of Chebyshev polynomials that are im- ]

portant to us, then explain how we pick our poinis = g(-1) <y <gl)= 57— (44

2k% +1

throughyy, and eventually sketch how the absolute value

of pa can be bounded &t Let A be an upper bound on the error with which we
can approximatef, i.e., |A;| = |pa(y;)| < A. Then

4.2.1 Review of Chebyshev Polynomials the polynomialpa(t) := pa(ge(t))/A has the property

Ipa(nik)] < 1, thatis,pa(t) belongs teCy,. Furthermore,
Our technique exploits certain extremal properties of pA(0) = A-pa(g, ' (0)) = A-pa(l+75). By Fact4.3, we
Chebyshev polynomials. For a basic introduction to Cheby- then havepa (0)| = A - [pa(1 + kl_z)| < A-|P(1+ 1?12)|-
shev polynomials we refer the reader to [27, 28, 31]. A To finish boundingpa (0)], we use the following lemma.
thorough treatment of these objects can be found in [32]. Lemma 4.4. Let P, be thek™ Chebyshev polynomial,
We now present the background relevant for our purposes. \ v« o1~ 1 Then

Definition 4.2. The setP;, consists of all polynomials of

degree at mosk with real coefficients. The Chebyshev . k 2j o2
polynomial of degreé, Py (z), is defined by the recurrence [Pe(1+ k7)) < H (1 + E) = e :
Jj=1
L (k=0 Proof. By induction and Eq. (4.1). [ |
Py(z) = {, (k=1 (41)

Therefore|pa (0)| < A - 2. Summarizing, our error in es-
timating f(0) is not significantly worsened by having only
approximate knowledge of eag¢hiy; ).

We note that for our analysis, we needed an upper bound
on how fastP;, grows once leaving-1, 1]. In the past how-
ever, lower bounds on the growth &, outside of[—1, 1]
had been used, for example, to obtain a low-degree polyno-
mial approximating th®©R function onn variables [24].

20Py_1(x) — Py_o(x), (k>2)

and satisfie$ P (z)| < 1 forall z € [-1,1]. The value
| Py ()| equalsl for exactlyk + 1 values ofx in [—1,1];
specifically, Py (n;x) = (=1)7 for 0 < j < k, where
n;k = cos(jm/k). The setC; is defined as the set of all
polynomialsp € Py, satisfyingmaxo< <k |p(n;.%)| < 1.

Fact 4.3(Extremal Growth Property). If € C;; and|t| > One can show that our choice gfis optimal in the fol-
1, then|p(t)| < |Pe(t)]. lowing sense. Consider points,...,t, € [—1,1], and
Proof. See [32, Ex. 1.5.11] or Rogosinski [33]. [ ] consider the clas€’ of polynomialsp of degree at most

k such thatmaxo<;<y [p(t;)] < 1. The maximum ab-

Fact 4.3 states that all polynomials which are bounded on = )
solute value of a polynomial i€’ for any x is exactly

certain “critical points” of the interval = [—1, 1] cannot X : _th : 4
grow faster than Chebyshev polynomials once leaving >_i—o lli(x)], wherel; is thei™ Lagrange basis polynomial
T —1t;
4.2.2 The Choice ofy; (o) =] r tj. :
g J

J#i
We will use Fact 4.3 to bounga (0). Since this fact pro-
vides no guarantees at= 0, we produce a new polyno- It can be shown that for each € (—oo,—1) U (1,00),
mial from pa by applying an affine map to its domain, then Zf:o |I;(x)| is minimized whent; = n; ;. Our choice of
bound this new polynomial at a poinslightly larger than  y; corresponds to the optimal choice ©f and therefore,
1. Fact 4.3 requires that this new polynomial is bounded on minimizes the maximum possiblga (0)|, given that each
the pointsn; ;,, so we will chose they;'s accordingly. The A, is bounded in absolute value by the satkhe> 0. We
affine map is also parameterized by a vafue 0 which is omit details in this version of the paper.



Algorithm 1. Algorithm for additively approximating empirical Shannentropy. Recall that we defife(«) = T 44.-
Choose error parametérandk points{yo, ..., yx }
Process the entire stream:
For each € {0, ...,k}, computeF ., a(1 + £)-approximation of the frequency momefit, ,,,
For eachi, computel'(y;) = (1 — Fiyy, /|| All1T) /ys
Return an estimate & (0) by polynomial interpolation using the poirigy;)

5 Estimating Shannon Entropy to consider the intervdl-/, 0), since Eq. (4.4) ensures that
51 Overview y; € [—£,0) for all i. Sincel = 1/(2(k + 1)logm),

) o ) ) Lemma 5.1 (proof omitted) implies that

We begin by describing Algorithm 1, a general algorithm
for computing an additive approximation to Shannon en-

k+1
tropy. The remainder of this paper describes and analyzes |T(k+1)(§)| < M

Ve e [-£,0). (5.1)

various details and incarnations of this algorithm, inahgd - k+2
extensions to give a multiplicative approximation in Sec- .
tion 5.3. We assume that, the length of the stream, is Lemma 5.1. Let ¢ be in (0,1/2]. Then,

known in advance, though in fact our algorithm works with T (— gl < 4 log" (m) H/(k +1).
only a constant factor increase in space as long as axé&lue
satisfyingm < m’ < m©® is known. Computing| A||, is Thus, by Fact 4.1 and Eq. (5.1), we have
trivial since we assume the strict turnstile model at presen

4 log" (m) H

i-DOi i k+1

5.2 Mu!u point Intfarpol_atl_or? | |T(0) — pr(0)] < |OF+t. I

The algorithm of Section 3 is limited by the following trade- kb1

off: if we choose the poing, to be close td, the accuracy < 1 Alog™ (m) H
increases, but the space usage also increases. In thsecti T 2kFl]oghT (m) (k+2)!

we mitigate that problem by applying the noisy extrapola- 2e €

tion technique of Section 4 and interpolating with multiple < (k4 2)! < 9 (5.2)

points. This allows us to obtain good accuracy without tak-

ing the point§ too cloge 0. _ . since2” = (logm)/c andH < logm.
The algorithm estimates Tsallis entropy with error pa- We now have to bound the second error tépm), since

rametet = /(200(k + 1)*log m), wherek = log(1/¢) + Algorithm 1 does not compute the exact valliggy;), it
loglogm. We define the pointgo, y1,....yr by S€tting oy computes approximations. The accuracy of these ap-
¢ =1/(2(k +1)logm) andy; = ge(n;,1), as in Eq. (4.3). proximations can be determined as follows.

The correctness of the algorithm is proven in Sec-

tion 5.2.1. Let us now analyze the space requirements. To

~ 1 . n 1+y;
1— Py, /|IA™ s 2y

compute the estimatg, | ,,,, the number of words of space T(y;) = < T(y;)— .
required is at most Yi Yi (5.3)
wil 1\ o lwly (~_2 To analyze the last term, recall thaf > 1/m for eachi

O( 22 + 5) = O( £ ) = 0|(¢ /logm). andyi > —(, SO thata:i” < mt = m1/2(k+1)logm < 2.

The first bound follows from Fact 2.1, the second since Thusy>_, =t <2 37" | ; = 2. By Eq. (4.4),
Eq. (4.4) shows tha;| > ¢/(2k* + 1) > &, and the third
since Eq. (4.4) shows théy;| < ¢ = 1/(2(k + 1)logm). _2% 2(2k% +1)& - 2k +1)e _ e

By our choice ofk = O(1) andé, the total space required v = / = 50(k+1)2 — 25
is O(¢ =2 log m) words. '

Thus, we have
5.2.1 Correctness

~ g
To prove correctness of our algorithm, it suffices to bound Tyi) < T(ys) < T(yi) + 25 (5.4)
the two error terms defined in Section 4. We now show that
both are at most/2. Hence, the additive errdpa (y;)| = |A;| on eachT (y;)

To bound the first error term, we use Fact 4.1. To ap- is bounded byA := £/25. In Section 4, we showed that
ply this fact, a bound ofil"**)(y)| is needed. It suffices  [pa(0)] < e?- A < £. This completes the analysis.



5.3 Multiplicative Approximation of
Shannon Entropy

We now discuss how to extend the multi-point interpola-
tion algorithm to obtain a multiplicative approximation of

Shannon entropy. The main tool that we require is a multi-

plicative estimate of Tsallis entropy, rather than the tdeli

moste - 3, w.

(2) If max; w; < 4/5 then, with probability at least/ 20,
every bin has at most#/8 fraction of the weight.

To find a heavy element, we proceed as follows. First,
definew; = |4;|/ ||A|l, ande = 1/10. Select a hash func-

estimates used above. Section 7 shows that the requiredion from + and use it to partition the elements into bins.

multiplicative estimates can be efficiently computed, gsin
tools provided in Section 6.

The modifications to the multi-point interpolation algo-
rithm are as follows. We sét = log(1/¢) andé = ¢/8.

We then use Algorithm 1, but instead of computing an ad-

ditive estimate of'(y;) as above, we lef'(;) be a(1 +&)-

For each bin, we maintain a counter of the gtweight

that hashes to it. If there is a bin of weight at le@g8,

then we declare that there is a heavy element (an element
of weight at least!/5). Otherwise, we declare that all ele-
ments have weight at mog{/8. By Fact 6.1, this test has
(one-sided) error at modH/20. Repeated independent tri-

multiplicative estimate, computed using Theorem 7.3. Then als can reduce the failure probability as desired.

T(y:) < T(y;) < T(yi) +ET(y:) < T(y;)+42H,

the last inequality by Lemma 5.1 with = 0. Next, as in
Eq. (5.2),|T(0) — pr(0)] < eH/2, since2* = 1/¢, so we
obtain a(1 + ¢)-multiplicative approximation td7.

6 Estimating Residual Moments

To multiplicatively approximate Shannon entropy, the algo
rithm of Section 5.3 requires a multiplicative approxinoati

of Tsallis entropy. Section 7 shows that the required quan-

If a heavy element exists, we can determine its identity
via a group-testing type of argument: we maintdisg, |
counters, of which the™ counts the number of elements
which have theiri" bit set. If there is heavy element, we
can determine its™ bit by checking whether the fraction
of elements with theii" bit set is at leass/5. The space
required isO(log n - logm) bits.

6.1 Bucketing Algorithm

In this section, we describe an algorithm for estimatifig®
that works only in the strict turnstile model (i.e4, > 0).

tities can be computed. The main tool needed is an efficientthe algorithm has two cases, depending on the value of

algorithm for estimatingesidual momentsThat is the topic
of the present section.

Define the residuala™ moment to be F!
Yoo |As|* = F, — |A1]*, where we reorder the items
such thag4;| > |As| > ... > |A4,]. In this section, we
present two efficient algorithms to computé & ¢ multi-
plicative approximation td:*s for « € (0, 2]. These algo-

rithms succeed with constant probability under the assump-

tion that a heavy hitter exists, sayl;| > 1 |/Al|;. The
algorithm of Section 6.1 is valid only in the strict turnstil
model. Its space usage has a complicated dependence on
for the primary range of interest; € [1/3, 1), the bound is
O((e7V/*4+e72(1—a) +logn) logm) bits. The algorithm

of Section 6.2 is valid in the general update model and usesguarant

O(e2logm) bits of space.
A subroutine that is needed for both our algorithms in

this section is to detect whether a heavy element exists

(J4;] > #]/A]],) and to find the identity of that element.
To accomplish this, we use the following result, which es-
sentially follows from the Count-Min Sketch data structure
of Cormode and Muthukrishnan [11].

Fact 6.1([11]). There exists a famil{{ of hash functions
mapping the: elements ta)(1/¢) bins with [H| = n©™")
such that a randorh € ‘H satisfies the following two prop-
erties. Letw € R’ be a weight vector witfy_, w; = 1.

(1) Forany element, with probability at least5/16, the
weight of elements that collide with elementis at

The second case is handled in part by artificially inserting
deletions into the stream, an idea used by [12] for residual
L, estimation.

Case i = (0,1)U[1,2]. We use the hash function from
Fact 6.1 to partition the elements into bins. For each bin,
we maintain a count of the number of elements that hash to
it and a sketch of the!” moment using Fact 2.1. (These
are identical ifa = 1.) If there is a bin whose counter

is more than7/8 of the total then there is a heavy ele-
ment, whose identity can be determined as above. Our esti-
mate is the sum of the moment sketches for all bins except
the one containing the heavy element. The approximation
ee follows from Fact 6.1, property (1), with weights
w; = AY/ ||A]|5. By Fact 2.1, the space usage is

(0] ((% +logn)logm + 1 - (% + %) logm)
la—1]

=o((*=

If o = 1, the space is onl) (£ + log n) log m) bits.

+ 5% + log n) log m) bits.

Case 2:a = [1,1). This idea is to keep just one sketch of
the o" moment for the entire stream. At the end, we esti-
mate F:° by artificially appending deletions to the stream
which almost entirely remove the heavy element from the
sketch.

The algorithm computes four quantities in parallel. First,

Fres = (1 4 ¢/)Fres with error parameter’ = ¢!/, using



the above algorithm witlx = 1. Secondf,, = (1£e)F, Proof (sketch). Define the functior : RT™ — R by
using Fact 2.1. ThirdF}, which is trivial in the strict turn-

stile model. Lastly, we determine the identity of the heavy ~[2D(3)0(5) sin(Z2)]
element as in Fact 6.1. Vie) = [2T(2)0(2) sin(z2)] -
. . res . T 3 3 6
Now we explain how to estimatg’s. Without loss of
generality, element is heavy. The key observation is that In the full version of the paper we show
Fy — F{* is a very good approximation td;. So if we
delete the heavy elemefl; — F7°%) times, the number of r (1)3
ini H _ H es hm V( ): 3 —
remaining occurrences is non-negative and at radisf*. o T (2)6
Define F;** to be the value off, after processing these 3
deletions. Clearlyfy™ < Fy®. On the other hand, the Li shows in [22] that the variance of the geometric mean
remaining occurrences of the heavy element contribute atactimator witht = 3 is V(a)F2. AsT(z) andsin(z) are
most(e' F{**)* to F3**. Thus continuous forz € Ry, so isV(a). Furthermore, since

lim, 0 V() exists, we defind’(0) to be this limit. Thus
V(«) is continuous orf0, 2], and the extreme value theo-
rem implies there exists a constat;, such thaf/ (o) <
Caym on [0, 2]. |

Let r denote the number of independent trials. For each
j € [r], the algorithm picks a functioh; : [n] — {0,1}
uniformly at random. Foy € [r] andl € {0, 1}, define
Foji = Yin, ()= |Ail*. This is thea™ moment for the
I™ substream during thg" trial.

For eachj and !/, our algorithm computes an estimate
_ ) ) ) ) _ FE, j.1 of F,, ;; using the geometric mean estimator. We also
This section describes an algorithm for estimatirig® in run in parallel the algorithm of Fact 6.1 to discover which
the general update model. At a high level, the algorithm ; [n] is the heavy hitter; henceforth assutine- 1. Our
uses a hash function to partition the stream elements intogyerall estimate foFres is then
two substreams, then separately estimates the moment
for the substreams. The estimate for the substream which
does not contain the heavy hitter yields a good estimate of F = - Z o5, 1=h;(
Fres. We improve accuracy of this estimator by averaging

many independent trials. Detailed description and anslysi The space used by our algorithm is simply the space re-

follow. . ) ) ) quired forr geometric mean estimators and the one heavy
We use Li'sgeometric mean estimat¢22] for estimat- hitter algorithm. The latter use@((s‘l + logn) log m)

ing F,, since it is unbiased. (This property will be useful bits of space. Thus the total space require(d($r+s‘1 +
later.) The geometric mean estimator is defined as follows. .
logn)logm) bits.

Let k anda be parameters. We lgt= R - A, whereA is

Fées S Fgées _"_ (El)a(Flres)a S Fées + (El)aFées7

the last inequality by concavity of the functign+— y°.
This shows thaF s = (1 + ) F, since(e’)* = . The
space used by this algorithm is at most

O (Llogm+ (152 +
= O ((m7= + 5~ +logn)logm) bits.

%) logm + lognlog m)

6.2 Geometric Mean Algorithm

the vector representing the stream ahik ak x n matrix To analyze the algorithm, definB = [10g1+ﬁ m]

vyhose eptrles are i.i.d. samples from asstable distribu- Define I, — {Z (4 £)7 < |A] < (14 £)+ } for
tion. Define e L

0 < 2 < R Letzrsatisfy (1 + 5)° < |4 <

P H?:l ;| (1+£)** Forl < j < rand0 < z < R, define

C O AD(2)D(1 — §)sin(Z2))F Xj. = Yicr. Ln,i)#n;(1)- To analyze thg™ trial, we

) need the following simple claim.
Li analyzed the variance of, ask — oo, however for Clam6.3. E[2-F, ;- (1)] = (1 +0(e)) - Fres.
our purposes we are only interested in the dase 3 and i

~ i _ 1
henceforth restrict to only this case. (One can sligymhas We now show concentration fof . r i<j<r X,
unbounded variance fdr < 3.) In this case, the estimator By independence of th;'s, Chernoff bounds ShOW that
’ X, = (1 £¢E[X.] W|th probability at leastl —

can be computed usin@(log m) bits of space. Building on . o .
Li's analysisr,) we shovr\fgtE]egfolléwing. P ’ exp(=6(e?r)).  This quantity is at least — gy if
we choose’ = ¢, [e%(loglog ||A||1 + log(cs/€))]. The
good evenis the eventthat, foralt, X, = (1+¢)E[ X, ];

2
thatVar [ a:| <Cgu-E [F } : a union bound shows that this occurs with probability at

Lemma 6.2. There exists an absolute constéhf,,; such



least7/8. So suppose that the good event occurs. Then a7.1 Additive Approximation

calculation analogous to Claim 6.3 shows that

2 ,
Z; 'Fa,j,lfhj(l) = (1:|ZO(E)) .For(es. (61)
J

Recall thatFr*s = 37", 2F, ;1-1,(1)- Since the geo-

metric mean estimator is unbiased, we also have that

[res 2
E{Fa } =B Z;Fa,j,l—hju) . (6.2)
J

Theorem 7.1. There is a streaming algorithm that com-
putes an additives-approximation of Rényi entropy in

o) (‘llfi"’faz) bits of space for any € (0,1) U (1, 2].

Theorem 7.2. There is a streaming algorithm for additive
approximation of Tsallis entropy,, using

e O (%) bits, fora € (0, 1).

. O( log m ) bits, fora € (1,2].

(a—1)e?

We conclude the analysis by showing that the random vari- Proof. If a € (0,1), the,n because the functiart is con-
able £ is concentrated. By Lemma 6.2 applied to each Cave, we get by Jensen’s inequality

substream, and properties of variance, we have

Var{ﬁées} = —ZVar

|
s — - 'E[Fa.,j,lfhm)r

2
< Gam g |:Frcs:|

Chebyshev’s inequality therefore shows that

Canm
e2r

Pr[ﬁécs:(lis)E{F;"S} } > 1- > 6/7,

n 1 «

§ xia S - <_> — nlfa.
: n

1=1

If we compute a multiplicativél + (1 — a) - & - n®71)-
approximation to thex™ moment, we obtain an additive
(1 — «) - e-approximation ta(}_"_, &) — 1. Thisin turn
gives an additive-approximation tdl,,. By Fact 2.1,

X ((((1 e BT A e n) IOgm)

bits of space suffice to achieve the required approxi-
mation to theo™ moment. This bound simplifies to

by appropriate choice of constants. This event and the goodO(n2('=*) logm/((1 — a)e?)) bits.

event both occur with probability at lea3f4. When this
holds, we have

B = 2B [Fe]
= (1+¢)E Z2F :
= € g 1=h; (1)
J
= (1£0(c)) - F,
by Eq. (6.2) and Eq. (6.1).

7 Estimation of Rényi and Tsallis Entropy

Fora > 1, the valueF,, /|| A|| is at mostl, so it suffices
to approximate-,, to within a factor ofl + (a« — 1) - €. For
a € (1,2], again using Fact 2.1, we can achieve this using
O(logm/((a — 1)&?)) bits of space. [ |

7.2 Multiplicative Approximation

Multiplicative approximation of Tsallis entropy is mord-di
ficult than additive approximation, because a single moment
approximation is not sufficient. Nevertheless, we prove the
following theorem.

Theorem 7.3. There is a streaming algorithm for multi-
plicative (1 + ¢)-approximation of Tsallis entropy for any

This section summarizes our algorithms for estimating @ € (0,1) U (1,2] using O (logm/(|1 — ale?)) bits of

Tsallis entropy. These algorithms are used as subroutinesPace.

for estimating Shannon entropy in Section 5. Our tech- Proof (sketch). We show that if allz; < 5/6, then

niques can also be used to estimate Rényi entropy. Thel,(z) > C, for some absolute consta@t Therefore, if

algorithms presented here may be of independentinterest. all x; < 5/6, thenT,(z) is sufficiently large, and additive
The techniques we use for both the entropies are almostapproximation with erroe - C' gives a good multiplicative

identical. In particular, to compute an additive approxima approximation ofl, (x).

tion of T,, or H,, for o € (0,1) U (1, 2], it suffices to com-

Assume now that there is; > 2/3. Let A = z§ — 1

pute a sufficiently precise multiplicative approximatioh o andB = Zi# z$'. We show that the sum of sufficiently
the a-th moment. Due to space constraints, we only sketch good multiplicative approximations té and B gives a mul-
the proofs for Tsallis entropy estimation. The complete tiplicative approximation tod + B = > 2% — 1, which is
proofs for both Rényi and Tsallis entropy appear in the full a value that immediately yields a multiplicative approxima

version.

tion to Tsallis entropy. This follows from the fact that if



there is a heavy element, then< 0 and B > 0 are val-

orem 7.3. In the general update model, a weaker result

ues of different magnitudes, and small errors on them arethan Theorem 7.3 holds: we obtain a multiplicatftet ¢)-

still relatively small with respect ttA + B|. We prove that
to multiplicatively approximated in this case, it suffices
to have a multiplicative approximation & = 1 — x;.
Further,B = F!*. Hence, we can use the algorithms of
Section 6.1 to approximaté and B. We also use these al-

approximation of Tsallis entropy forany € (0,1) U (1, 2]
usingO (logm/(|1 — | - €)?) bits of space. The proof is
nearly identical to that of Theorem 7.3, except that the mo-
ment estimator of Fact 2.1 uses more space, and we must
use the residual moment algorithm of Section 6.2 instead of

gorithms to check if there is a heavy element, and to decideSection 6.1. Similar modifications must be made to Theo-

which of the two casesnax; z; < 5/6 andmax; z; > 2/3
holds. |
Tsallis entropy can be efficiently approximated both

multiplicatively and additively also fow > 2, but we omit
a proof of that fact in this version of the paper.

Using similar techniques, one can also obtain an algo-

rithm for Rényi entropy.

Theorem 7.4. There is a streaming algorithm for
multiplicative (1 + ¢)-approximation of Rényi entropy
for any « € (0,1) U (1,2]. The algorithm uses
O (logm/(|1 — a|?)) bits of space.

Theorem 7.4 is in fact tight in the sense tliat+ ¢)-
multiplicative approximation offf, for a > 2 requires

polynomial space, as seen in the following theorem. Since

the proof follows very closely along the lines of Theorem
3.1 of [2] but using the stronger multiparty disjointness
lower bound of [9], we omit the proof here.

Theorem 7.5. For any constantv > 2, any random-
ized constant-pass streaming algorithm whidh+ ¢)-
approximates,, (X ) requires(n'~2/9=2¢ /logn) bits of
space. If the algorithm is allowed only one pass, the lower
bound increases t@(n'~2/~2%¢) bits.

8 Modifications for General Update Streams

rem 7.1, Theorem 7.2 and Theorem 7.4, with a commensu-
rate increase in the space bounds.

9 Conclusion

We hope that the techniques from approximation theory that
we introduce may be useful for streaming and sketching
other functions. For example, Cormode et al. [10] observe
that I, /105 m = (1 £ O(g))Lo, where Lo, or the “Ham-
ming norm”, is the number of non-zero frequencies in the
vector A. They thus reducé,, estimation to estimating a
single moment withp near0. Using our techniques from
Section 4 together with bounds on the higher order deriva-
tives of F}, as a function ofp, one can easily show that a
(1 + ¢)-approximation ofL, can be obtained using(1)
moment estimationg},, for p; = ©(1/logm) for eachi,
which can be useful when moment estimations near 0
are expensive (though better methods are already known for
L estimation).

Also, consider the following functionG,, i(x)
>, 2% (logn)k, wherek € N anda € [0,00). One can
show that

. G
lim
B—a

k(7)) — Gpi(7)
a—f3

= Gprt1(2).

The algorithms described in Section 5 and Section 7 are forNote thatG., o(z) is thea™ moment ofz, and one can at-

the strict turnstile model. They can be extended to work in
the general update model with a few modifications.

First, we cannot efficiently and exactly compute
|All, = Fi in the general update model. However, a
(1 + ¢)-multiplicative approximation can be computed in
O(e~21ogm) bits of space by Fact 2.1. In Section 3 and
Section 5.2, the value dfA|, is used as a normalization
factor to scale the estimate Bf, to an estimate of ", z.
(See, e.g., Eg. (3.1) and Eg. (5.3).) However,

(1+e)-F,
(Le) )"

so the fact thatt} can only be approximated in the gen-

Fo

Fy
= o

(Fy)>

~ (1£0()

tempt to estimaté’,, ;1 by computing=g j, for § = aand

0 close toa. Itis not unlikely that our techniques can be
generalized to estimation of function, j for « € (0, 2].

Can one also use our techniques for approximation of other
classes of functions?
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the constant factor that multiplies A similar modification
must also be applied to all algorithms in Section 7; we omit
the detalils.

Next, the multiplicative algorithm in Section 5.3 needs
to compute a multiplicative estimate @f(y;) using The-
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