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Abstract

We give near-optimal sketching and streaming algorithms
for estimating Shannon entropy in the most general stream-
ing model, with arbitrary insertions and deletions. This
improves on prior results that obtain suboptimal space
bounds in the general model, and near-optimal bounds in
the insertion-only model without sketching. Our high-level
approach is simple: we give algorithms to estimate Tsallis
entropy, and use them to extrapolate an estimate of Shan-
non entropy. The accuracy of our estimates is proven us-
ing approximation theory arguments and extremal proper-
ties of Chebyshev polynomials. Our work also yields the
best-known and near-optimal additive approximations for
entropy, and hence also for conditional entropy and mutual
information.

1 Introduction
Streaming algorithms have attracted much attention in
several computer science communities, notably theory,
databases, and networking. Many algorithmic problems in
this model are now well-understood, for example, the prob-
lem of estimating frequency moments [1, 2, 12, 19, 34, 37].
More recently, several researchers have studied the problem
of estimating the empirical entropy of a stream [4, 7, 8, 14,
15, 39].

Motivation. Entropy is a fundamentally important quantity
that can be used to measure information content, the uncer-
tainty of a random variable, or the compressibility of a text.
It also finds several practical applications in computer net-
working, such as network anomaly detection. Let us con-
sider a concrete example. One form of malicious activity on
the internet isport scanning, in which attackers probe target
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machines, trying to find open ports which could be lever-
aged for further attacks. In contrast, typical internet traffic
is directed to a small number of heavily used ports for web
traffic, email delivery, etc. Consequently, when a port scan-
ning attack is underway, there is a significant change in the
distribution of port numbers in the packets being delivered.
It has been shown that measuring the entropy of the distri-
bution of port numbers provides an effective means to detect
such attacks. See Lakhina et al. [20] and Xu et al. [38] for
further information about such problems and methods for
their solution.

Our Techniques. In this paper, we give an algorithm for
estimating empirical Shannon entropy while using space
nearly optimal in terms of the desired estimation accuracy.
Our algorithm is actually a sketching algorithm, not just a
streaming algorithm, and it applies to general streams which
allow insertions and deletions of elements. One attractive
aspect of our work is its clean high-level approach: we
reduce the entropy estimation problem to the well-studied
frequency moment problem. More concretely, we give al-
gorithms for estimating Tsallis entropy, which is closely re-
lated to frequency moments. The link to Shannon entropy is
established by proving bounds on the rate at which Tsallis
entropy converges to Shannon entropy.

The full version of this paper establishes similar results
for the convergence of Rényi entropy to Shannon entropy.
Remarkably, it seems that such an analysis was not previ-
ously known.

There are several technical obstacles that arise with this
approach. Unfortunately, it does not seem that the optimal
amount of space can be obtained while using just a single
estimate of Tsallis entropy. We overcome this obstacle by
using several estimates, together with approximation the-
ory arguments and certain extremal properties of Cheby-
shev polynomials. To our knowledge, this is the first use
of such techniques in the context of streaming algorithms,
and it seems likely that these techniques could be applicable
to many other problems.

Such arguments yield good algorithms for additively es-
timating entropy, but obtaining a good multiplicative ap-
proximation is more difficult when the entropy is very



small. In such a scenario, there is necessarily a very
heavy element, and the task that one must solve is to es-
timate the moment of all elementsexcludingthis heavy el-
ement. This task has become known as theresidual mo-
ment estimation problem, and it is emerging as a useful
building block for other streaming problems [4, 6, 12].
To estimate theαth residual moment forα ∈ (0, 2], we
show thatÕ(ε−2 log m) bits1,2 of space suffice with a
random oracle and̃O(ε−2 log2 m) bits without. Here we
use the notationf(m, ε) = Õ(g(m, ε)) if f(m, ε) =
O(g(m, ε)(log log m + log(1/ε))O(1)). In comparison, ex-
isting algorithms useO(ε−2 log2 m) bits for α = 2 [13],
and O(ε−2 log m) for α = 1 [12]. No non-trivial algo-
rithms were previously known forα 6∈ {1, 2}. That said,
the previously known algorithms were more general in ways
irrelevant to our work: they can remove thek heaviest ele-
ments without requiring that they are sufficiently heavy.

Multiplicative Entropy Estimation. Let us now state the
performance of the entropy estimation algorithms more ex-
plicitly. We focus exclusively on single-pass algorithms
unless otherwise noted. The first algorithms for approxi-
mating entropy in the streaming model are due to Guha et
al. [15]; they achievedO(ε−2 + log m) words of space3

but assumed a randomly ordered stream. Chakrabarti,
Do Ba and Muthukrishnan [8] then gave an algorithm for
worst-case ordered streams usingO(ε−2 log2 m) words of
space, but required two passes over the input. The al-
gorithm of Chakrabarti, Cormode and McGregor [7] uses
O(ε−2 log m) words of space to give a multiplicative1 + ε
approximation, although their algorithm cannot produce
sketches and only applies to insertion-only streams. In con-
trast, the algorithm of Bhuvanagiri and Ganguly [4] pro-
vides a sketch and can handle deletions but requires roughly
Õ(ε−3 log4 m) words4.

Our work focuses primarily in thestrict turnstile model
(defined in Section 2), which allows deletions. Our al-
gorithm for multiplicatively estimating Shannon entropy
usesÕ(ε−2 log m) words of space. These bounds are
nearly-optimal in terms of the dependence onε, since there
is a lower bound ofΩ̃(ε−2) bits even for insertion-only
streams [7]. Our algorithms assume access to a random or-
acle. This assumption can be removed through the use of
Nisan’s pseudorandom generator [23], increasing the space
bounds by a factor ofO(log(m/ε)).

1When giving bounds, we often use the following tilde notation: we
say f(m, ε) = Õ(g(m, ε)) if f(m, ε) = O(g(m, ε)(log log m +
log(1/ε))O(1)).

2The length of the stream is denotedm and the approximation accuracy
is 1 + ε. For precise definitions, see Section 2.

3A word is a string of⌈log m⌉ bits.
4A recent, yet unpublished improvement by the same authors [5] im-

proves this toÕ(ε−3 log3 m) words.

Additive Entropy Estimation. Additive approximations
of entropy are also useful, as they directly yield additive
approximations of conditional entropy and mutual infor-
mation, which cannot be approximated multiplicatively in
small space [18]. Chakrabarti et al. [7] noted that since
Shannon entropy is bounded above bylog m, a multiplica-
tive (1 + (ε/ logm)) approximation yields an additiveε-
approximation. In this way, the work of Chakrabarti et
al. [7] and Bhuvanagiri and Ganguly [4] yield additiveε
approximations usingO(ε−2 log3 m) and Õ(ε−3 log7 m)
words of space respectively. Our algorithm yields an ad-
ditive ε approximation using onlỹO(ε−2 log m) words of
space. In particular, our space bounds for multiplicative
and additive approximation differ by onlylog log m fac-
tors. Zhao et al. [39] give practical methods for additively
estimating the so-called entropy norm of a stream. Their
algorithm can be viewed as a special case of ours since it
interpolates Shannon entropy using two estimates of Tsal-
lis entropy, although this interpretation was seemingly un-
known to those authors.

Other Information Statistics. We also give algorithms for
approximating Rényi [30] and Tsallis [35] entropy. Rényi
entropy plays an important role in expanders, pseudoran-
dom generators, quantum computation, and ecology. Tsallis
entropy is an important quantity in physics that generalizes
Boltzmann-Gibbs entropy, and also plays a role in quantum
physics. Rényi and Tsallis entropy are both parameterized
by a scalarα ≥ 0. The efficiency of our estimation algo-
rithms depends onα, and is stated precisely in Section 7.

Approximating Entropy from Samples. One conceivable
approach to design a streaming algorithm for approximating
entropy is to leverage the existing work on approximating
the entropy of a discrete probability distribution from inde-
pendent random samples [3, 25, 26, 29, 36]. It can easily be
shown that in this model it is not possible to obtain a mul-
tiplicative entropy approximation witho(m) samples. It is
also known [3, 29, 36] that additive approximation of en-
tropy requiresnΩ(1) samples. Therefore, it seems unlikely
that the sampling approach yields space-efficient streaming
algorithms.

2 Preliminaries

Let A = (A1, . . . , An) ∈ Z
n be a vector initialized as~0

which is modified by a stream ofm updates. Each update
is of the form(i, v), wherei ∈ [n] andv ∈ {−M, . . . , M},
and causes the changeAi ← Ai + v. For simplicity in
stating bounds, we henceforth assumem ≥ n andM =
1; the latter can be simulated by increasingm by a factor
of M and representing an update(i, v) with |v| separate
updates (though in actuality our algorithm can perform all
|v| updates simultaneously in the time it takes to do one
update). The vectorA gives rise to a probability distribution



x = (x1, . . . , xn) with xi = |Ai|/ ‖A‖1. Thus for eachi
eitherxi = 0 or xi ≥ 1/m.

In the strict turnstile model, we assumeAi ≥ 0 for all
i ∈ [n] at the end of the stream. In thegeneral update model
we make no such assumption. For the remainder of this pa-
per, we assume the strict turnstile model and assume access
to a random oracle, unless stated otherwise. Our algorithms
also extend to the general update model, typically increas-
ing bounds by a factor ofO(log m). As remarked above, the
random oracle can be removed, using [23], while increasing
the space by anotherO(log(m/ε)) factor.

We now define some notation. For realα > 0,
the αth norm of a vectorx ∈ R

n is defined‖x‖α =
(
∑n

i=1|xi|
α)1/α; also,‖x‖0 = |{ i : xi 6= 0 }|. (For α ∈

[0, 1), ‖·‖α is not actually a norm in the usual sense.) We
define theαth momentof the stream asFα =

∑n
i=1|Ai|

α =
‖A‖

α
α. For x a probability distribution, we define theαth

Rényi entropyas Hα = log(‖x‖αα)/(1 − α) and theαth

Tsallis entropyas Tα = (1 − ‖x‖
α
α)/(α − 1). Shan-

non entropyH is defined byH = −
∑n

i=1 xi log xi. A
straightforward application of l’Hôpital’s rule shows that
H = limα→1 Hα = limα→1 Tα. It is often convenient
to focus on the quantityα − 1 instead ofα, so we define
H(a) = H1+a andT (a) = T1+a.

We will often need to approximate frequency moments,
for which we use the following:

Fact 2.1(Indyk [17], Li [21], [22]). There is an algorithm
to compute a multiplicative(1+ε)-approximation ofFα for
anyα ∈ (0, 2]. The algorithm succeeds with constant prob-
ability. It usesO(ε−2 log m) bits of space in the general

update model, andO
(

( |α−1|
ε2 + 1

ε

)

log m
)

bits of space in

the strict turnstile model.

For any functiona 7→ f(a), we denote itskth derivative
with respect toa by f (k)(a).

3 A Simple Algorithm

As a precursor to our full approach, consider estimating
Shannon entropyH by estimating Tsallis entropyT (y) =
T1+y for y ≈ 0. To do so, we can use Fact 2.1 to compute
F̃1+y, a (1 ± ε̃)-approximation toF1+y. To be concrete,
we choosey = −Θ(ε/(logn logm)) and ε̃ = ε · y. The
space required isO(ε−3 log n logm) words. The following
argument shows this gives an additiveO(ε) approximation.
With constant probability,̃F1+y = (1 ± ε̃)F1+y . Then our
estimate is

T̃ (y) =
1

y

(

1−
F̃1+y

||A||1+y
1

)

(3.1)

=
1

y

(

1−
F1+y

||A||1+y
1

)

+
ε̃

y

n
∑

i = 1

(

Ai

||A||1

)1+y

= T (y)±O
( ε̃

y

)

= H ±O(ε).

The third equality holds by choice ofy since 1/m ≤
Ai/||A||1 ≤ 1. The last equality follows by the mean value
theorem and a bound on the absolute value of the deriva-
tive of T neary. We prove such a bound in Section 5.2.1.
Specifically, Lemma 5.1 withε = ε̃ andk = 1 shows that
the derivativeT (1)(z) is O(log n log m) for y ≤ z < 0.

In Section 5, we improve on this simple algorithm by
estimating Tsallis entropy at multiple points. This scheme
is analyzed using certain approximation theory arguments,
which we discuss in the next section.

4 Noisy Extrapolation
In this section, we describe an extrapolation technique that
lies at the heart of our main streaming algorithms for Shan-
non entropy. Letf : R → R be a continuous function
that we can evaluate approximately at every point except
0. Further, suppose that evaluatingf(y) becomes increas-
ingly expensive asy goes to0. We want to approximate
f(0). Therefore, we approximatef at a few carefully cho-
sen pointsy0, . . . , yk far from0 and use the achieved values
to extrapolate the value off at 0. Letzi = f(yi) + ∆i be
the approximation tof(yi) that we compute.∆i is the error
on approximatingf(yi). We then compute the only polyno-
mial p of degree at mostk such thatp(yi) = zi, and hope
thatp(0) is a good approximation tof(0).

The polynomialp can be decomposed into two polyno-
mialspf andp∆ of degree at mostk such thatp = pf +p∆,
and for eachi, pf (yi) = f(yi) andp∆(yi) = ∆i. We have
|p(0) − f(0)| ≤ |pf (0) − f(0)| + |p∆(0)|. We analyze
and bound each of the last two terms separately. A standard
result on approximation of functions by polynomials can
be used to bound the first term, providedf is sufficiently
smooth. Bounding the second term is one of the main con-
tributions of the paper. It requires a careful choice ofyi

and employs extremal properties of Chebyshev polynomi-
als. An application of the technique is described in more
detail in Section 5.2.

4.1 Bounding the First Error Term
The following standard result on approximation of func-
tions by polynomials can be used to bound the error due to
use of extrapolation. Recall that the notationf (k) denotes
thekth derivative off .

Fact 4.1 (Phillips and Taylor [28], Theorem 4.2). Let
y0, y1, . . . , yk be points in the interval[a, b]. Letf : R→ R

be such thatf (1), . . . , f (k) exist and are continuous on
[a, b], andf (k+1) exists on(a, b). Then, for everyy ∈ [a, b],
there existsξy ∈ (a, b) such that

f(y)− pf(y) =

(

k
∏

i=0

(y − yi)

)

f (k+1)(ξy)

(k + 1)!
,



wherepf (y) is the degree-k polynomial obtained by inter-
polating the points(yi, f(yi)), 0 ≤ i ≤ k.

As long asf is sufficiently smooth and has bounded
derivatives, andy is not too far from eachyi, the above fact
immediately yields a good bound on the extrapolation error.

4.2 Bounding the Second Error Term
We now show how to bound|p∆(0)|, the error due to the
fact that we learn eachf(yi) only approximately. The
careful choice ofy0, y1, . . . , yk and extremal properties of
Chebyshev polynomials are used to limit|p∆(0)|. We first
describe properties of Chebyshev polynomials that are im-
portant to us, then explain how we pick our pointsy0

throughyk, and eventually sketch how the absolute value
of p∆ can be bounded at0.

4.2.1 Review of Chebyshev Polynomials

Our technique exploits certain extremal properties of
Chebyshev polynomials. For a basic introduction to Cheby-
shev polynomials we refer the reader to [27, 28, 31]. A
thorough treatment of these objects can be found in [32].
We now present the background relevant for our purposes.

Definition 4.2. The setPk consists of all polynomials of
degree at mostk with real coefficients. The Chebyshev
polynomial of degreek, Pk(x), is defined by the recurrence

Pk(x) =











1, (k = 0)

x, (k = 1)

2xPk−1(x)− Pk−2(x), (k ≥ 2)

(4.1)

and satisfies|Pk(x)| ≤ 1 for all x ∈ [−1, 1]. The value
|Pk(x)| equals1 for exactlyk + 1 values ofx in [−1, 1];
specifically,Pk(ηj,k) = (−1)j for 0 ≤ j ≤ k, where
ηj,k = cos(jπ/k). The setCk is defined as the set of all
polynomialsp ∈ Pk satisfyingmax0≤j≤k |p(ηj,k)| ≤ 1.

Fact 4.3(Extremal Growth Property). Ifp ∈ Ck and|t| ≥
1, then|p(t)| ≤ |Pk(t)|.

Proof. See [32, Ex. 1.5.11] or Rogosinski [33]. �

Fact 4.3 states that all polynomials which are bounded on
certain “critical points” of the intervalI = [−1, 1] cannot
grow faster than Chebyshev polynomials once leavingI.

4.2.2 The Choice ofyi

We will use Fact 4.3 to boundp∆(0). Since this fact pro-
vides no guarantees att = 0, we produce a new polyno-
mial fromp∆ by applying an affine map to its domain, then
bound this new polynomial at a pointt slightly larger than
1. Fact 4.3 requires that this new polynomial is bounded on
the pointsηi,k, so we will chose theyi’s accordingly. The
affine map is also parameterized by a valueℓ > 0 which is

irrelevant for now, but is used in Section 5 to control how
close theyi’s are to0, and consequently the efficiency of
estimatingf(yi).

Formally, define

gℓ(t) :=

(

ℓ

2k2 + 1

)

(

k2 · t − (k2 + 1)
)

, and (4.2)

yi := gℓ(ηi,k). (4.3)

Note thatgℓ(1 + 1
k2 ) = 0 and that

−ℓ = gℓ(−1) ≤ yi ≤ gℓ(1) = −
ℓ

2k2 + 1
. (4.4)

Let ∆ be an upper bound on the error with which we
can approximatef , i.e., |∆i| = |p∆(yi)| ≤ ∆. Then
the polynomialp̃∆(t) := p∆(gℓ(t))/∆ has the property
|p̃∆(ηi,k)| ≤ 1, that is,p̃∆(t) belongs toCk. Furthermore,
p∆(0) = ∆·p̃∆(g−1

ℓ (0)) = ∆·p̃∆(1+ 1
k2 ). By Fact 4.3, we

then have|p∆(0)| = ∆ · |p̃∆(1 + 1
k2 )| ≤ ∆ · |Pk(1 + 1

k2 )|.
To finish bounding|p∆(0)|, we use the following lemma.

Lemma 4.4. Let Pk be thekth Chebyshev polynomial,
wherek ≥ 1. Then

|Pk(1 + k−c)| ≤

k
∏

j=1

(

1 +
2j

kc

)

≤ e2k2−c

.

Proof. By induction and Eq. (4.1). �

Therefore,|p∆(0)| ≤ ∆ · e2. Summarizing, our error in es-
timatingf(0) is not significantly worsened by having only
approximate knowledge of eachf(yi).

We note that for our analysis, we needed an upper bound
on how fastPk grows once leaving[−1, 1]. In the past how-
ever, lower bounds on the growth ofPk outside of[−1, 1]
had been used, for example, to obtain a low-degree polyno-
mial approximating theOR function onn variables [24].

One can show that our choice ofyi is optimal in the fol-
lowing sense. Consider pointst0, . . . , tk ∈ [−1, 1], and
consider the classC′ of polynomialsp of degree at most
k such thatmax0≤i≤k |p(ti)| ≤ 1. The maximum ab-
solute value of a polynomial inC′ for any x is exactly
∑k

i=0 |li(x)|, whereli is theith Lagrange basis polynomial

li(x) =
∏

j 6=i

x− tj
ti − tj

.

It can be shown that for eachx ∈ (−∞,−1) ∪ (1,∞),
∑k

i=0 |li(x)| is minimized whenti = ηi,k. Our choice of
yi corresponds to the optimal choice ofti, and therefore,
minimizes the maximum possible|p∆(0)|, given that each
∆i is bounded in absolute value by the same∆ > 0. We
omit details in this version of the paper.



Algorithm 1. Algorithm for additively approximating empirical Shannonentropy. Recall that we defineT (α) = T1+α.

Choose error parameterε̃ andk points{y0, . . . , yk}
Process the entire stream:

For eachi ∈ {0, . . . , k}, computeF̃1+yi , a(1 + ε̃)-approximation of the frequency momentF1+yi

For eachi, computeT̃ (yi) =
(

1− F̃1+yi/||A||
1+yi

1

)

/yi

Return an estimate ofT (0) by polynomial interpolation using the points̃T (yi)

5 Estimating Shannon Entropy
5.1 Overview
We begin by describing Algorithm 1, a general algorithm
for computing an additive approximation to Shannon en-
tropy. The remainder of this paper describes and analyzes
various details and incarnations of this algorithm, including
extensions to give a multiplicative approximation in Sec-
tion 5.3. We assume thatm, the length of the stream, is
known in advance, though in fact our algorithm works with
only a constant factor increase in space as long as a valuem′

satisfyingm ≤ m′ ≤ mO(1) is known. Computing‖A‖1 is
trivial since we assume the strict turnstile model at present.

5.2 Multi-point Interpolation
The algorithm of Section 3 is limited by the following trade-
off: if we choose the pointy0 to be close to0, the accuracy
increases, but the space usage also increases. In this section,
we mitigate that problem by applying the noisy extrapola-
tion technique of Section 4 and interpolating with multiple
points. This allows us to obtain good accuracy without tak-
ing the points too close to0.

The algorithm estimates Tsallis entropy with error pa-
rameter̃ε = ε/(200(k+1)3 log m), wherek = log(1/ε)+
log log m. We define the pointsy0, y1, . . . , yk by setting
ℓ = 1/(2(k + 1) log m) andyi = gℓ(ηi,k), as in Eq. (4.3).

The correctness of the algorithm is proven in Sec-
tion 5.2.1. Let us now analyze the space requirements. To
compute the estimatẽF1+yi , the number of words of space
required is at most

O
( |yi|

ε̃2
+

1

ε̃

)

= O
( |yi|

ε̃2

)

= O
(

ε̃−2/ log m
)

.

The first bound follows from Fact 2.1, the second since
Eq. (4.4) shows that|yi| ≥ ℓ/(2k2 + 1) > ε̃, and the third
since Eq. (4.4) shows that|yi| ≤ ℓ = 1/(2(k + 1) logm).
By our choice ofk = Õ(1) and ε̃, the total space required
is Õ(ε−2 log m) words.

5.2.1 Correctness

To prove correctness of our algorithm, it suffices to bound
the two error terms defined in Section 4. We now show that
both are at mostε/2.

To bound the first error term, we use Fact 4.1. To ap-
ply this fact, a bound on|T (k+1)(y)| is needed. It suffices

to consider the interval[−ℓ, 0), since Eq. (4.4) ensures that
yi ∈ [−ℓ, 0) for all i. Sinceℓ = 1/(2(k + 1) log m),
Lemma 5.1 (proof omitted) implies that

|T (k+1)(ξ)| ≤
4 logk+1(m)H

k + 2
∀ξ ∈ [−ℓ, 0). (5.1)

Lemma 5.1. Let ε be in (0, 1/2]. Then,
|T (k)(− ε

(k+1) log m )| ≤ 4 logk(m)H/(k + 1).

Thus, by Fact 4.1 and Eq. (5.1), we have

|T (0)− pT (0)| ≤ |ℓ|k+1 ·
4 logk+1(m)H

(k + 1)! (k + 2)

≤
1

2k+1 logk+1(m)
·
4 logk+1(m)H

(k + 2)!

≤
2ε

(k + 2)!
≤

ε

2
, (5.2)

since2k = (log m)/ε andH ≤ log m.
We now have to bound the second error term|p∆|, since

Algorithm 1 does not compute the exact valuesT (yi), it
only computes approximations. The accuracy of these ap-
proximations can be determined as follows.

T̃ (yi) =
1− F̃1+yi/||A||

1+yi

1

yi
≤ T (yi)−ε̃·

∑n
j=1 x1+yi

j

yi
.

(5.3)
To analyze the last term, recall thatxj ≥ 1/m for eachi
andyi ≥ −ℓ, so thatxyi

i ≤ mℓ = m1/2(k+1) log m < 2.
Thus

∑n
j=1 x1+yi

j ≤ 2
∑n

j=1 xj = 2. By Eq. (4.4),

−
2ε̃

yi
≤

2(2k2 + 1)ε̃

ℓ
≤

(2k2 + 1)ε

50(k + 1)2
≤

ε

25
.

Thus, we have

T (yi) ≤ T̃ (yi) ≤ T (yi) +
ε

25
. (5.4)

Hence, the additive error|p∆(yi)| = |∆i| on eachT (yi)
is bounded by∆ := ε/25. In Section 4, we showed that
|p∆(0)| ≤ e2 ·∆ ≤ ε

2 . This completes the analysis.



5.3 Multiplicative Approximation of
Shannon Entropy

We now discuss how to extend the multi-point interpola-
tion algorithm to obtain a multiplicative approximation of
Shannon entropy. The main tool that we require is a multi-
plicative estimate of Tsallis entropy, rather than the additive
estimates used above. Section 7 shows that the required
multiplicative estimates can be efficiently computed, using
tools provided in Section 6.

The modifications to the multi-point interpolation algo-
rithm are as follows. We setk = log(1/ε) and ε̃ = ε/8.
We then use Algorithm 1, but instead of computing an ad-
ditive estimate ofT (yi) as above, we let̃T (yi) be a(1+ ε̃)-
multiplicative estimate, computed using Theorem 7.3. Then

T (yi) ≤ T̃ (yi) ≤ T (yi) + ε̃T (yi) ≤ T (yi) + 4ε̃H,

the last inequality by Lemma 5.1 withk = 0. Next, as in
Eq. (5.2),|T (0) − pT (0)| ≤ εH/2, since2k = 1/ε, so we
obtain a(1 + ε)-multiplicative approximation toH .

6 Estimating Residual Moments
To multiplicatively approximate Shannon entropy, the algo-
rithm of Section 5.3 requires a multiplicative approximation
of Tsallis entropy. Section 7 shows that the required quan-
tities can be computed. The main tool needed is an efficient
algorithm for estimatingresidual moments. That is the topic
of the present section.

Define the residualαth moment to be F res
α :=

∑n
i=2 |Ai|

α = Fα − |A1|
α, where we reorder the items

such that|A1| ≥ |A2| ≥ . . . ≥ |An|. In this section, we
present two efficient algorithms to compute a1 + ε multi-
plicative approximation toF res

α for α ∈ (0, 2]. These algo-
rithms succeed with constant probability under the assump-
tion that a heavy hitter exists, say|A1| ≥

4
5 ‖A‖1. The

algorithm of Section 6.1 is valid only in the strict turnstile
model. Its space usage has a complicated dependence onα;
for the primary range of interest,α ∈ [1/3, 1), the bound is
O((ε−1/α +ε−2(1−α)+log n) log m) bits. The algorithm
of Section 6.2 is valid in the general update model and uses
Õ(ε−2 log m) bits of space.

A subroutine that is needed for both our algorithms in
this section is to detect whether a heavy element exists
(|Ai| ≥

4
5 ‖A‖1) and to find the identity of that element.

To accomplish this, we use the following result, which es-
sentially follows from the Count-Min Sketch data structure
of Cormode and Muthukrishnan [11].

Fact 6.1([11]). There exists a familyH of hash functions
mapping then elements toO(1/ε) bins with |H| = nO(1)

such that a randomh ∈ H satisfies the following two prop-
erties. Letw ∈ R

n
+ be a weight vector with

∑

i wi = 1.

(1) For any elements, with probability at least15/16, the
weight of elements that collide with elements is at

mostε ·
∑

i6=s wi.

(2) If maxi wi < 4/5 then, with probability at least1/20,
every bin has at most a7/8 fraction of the weight.

To find a heavy element, we proceed as follows. First,
definewi = |Ai|/ ‖A‖1 andε = 1/10. Select a hash func-
tion fromH and use it to partition the elements into bins.
For each bin, we maintain a counter of the netL1-weight
that hashes to it. If there is a bin of weight at least7/8,
then we declare that there is a heavy element (an element
of weight at least4/5). Otherwise, we declare that all ele-
ments have weight at most7/8. By Fact 6.1, this test has
(one-sided) error at most19/20. Repeated independent tri-
als can reduce the failure probability as desired.

If a heavy element exists, we can determine its identity
via a group-testing type of argument: we maintain⌈log2 n⌉
counters, of which theith counts the number of elements
which have theirith bit set. If there is heavy element, we
can determine itsith bit by checking whether the fraction
of elements with theirith bit set is at least3/5. The space
required isO(log n · log m) bits.

6.1 Bucketing Algorithm
In this section, we describe an algorithm for estimatingF res

α

that works only in the strict turnstile model (i.e.,A ≥ 0).
The algorithm has two cases, depending on the value ofα.
The second case is handled in part by artificially inserting
deletions into the stream, an idea used by [12] for residual
L1 estimation.

Case 1:α = (0, 1
3 )∪ [1, 2]. We use the hash function from

Fact 6.1 to partition the elements into bins. For each bin,
we maintain a count of the number of elements that hash to
it and a sketch of theαth moment using Fact 2.1. (These
are identical ifα = 1.) If there is a bin whose counter
is more than7/8 of the total then there is a heavy ele-
ment, whose identity can be determined as above. Our esti-
mate is the sum of the moment sketches for all bins except
the one containing the heavy element. The approximation
guarantee follows from Fact 6.1, property (1), with weights
wi = Aα

i / ‖A‖αα. By Fact 2.1, the space usage is

O
(

(1
ε + log n) log m + 1

ε ·
(

|α−1|
ε2 + 1

ε

)

log m
)

= O
((

|α−1|
ε3 + 1

ε2 + log n
)

log m
)

bits.

If α = 1, the space is onlyO
(

(1
ε + log n) log m

)

bits.

Case 2:α = [13 , 1). This idea is to keep just one sketch of
theαth moment for the entire stream. At the end, we esti-
mateF res

α by artificially appending deletions to the stream
which almost entirely remove the heavy element from the
sketch.

The algorithm computes four quantities in parallel. First,
F̃ res

1 = (1 ± ε′)F res
1 with error parameterε′ = ε1/α, using



the above algorithm withα = 1. Second,F̃α = (1 ± ε)Fα

using Fact 2.1. Third,F1, which is trivial in the strict turn-
stile model. Lastly, we determine the identity of the heavy
element as in Fact 6.1.

Now we explain how to estimateF res
α . Without loss of

generality, element1 is heavy. The key observation is that
F1 − F̃ res

1 is a very good approximation toA1. So if we
delete the heavy element(F1 − F̃ res

1 ) times, the number of
remaining occurrences is non-negative and at mostε′F res

1 .
Define F̃ res

α to be the value ofF̃α after processing these
deletions. ClearlyF res

α ≤ F̃ res
α . On the other hand, the

remaining occurrences of the heavy element contribute at
most(ε′F res

1 )α to F̃ res
α . Thus

F̃ res
α ≤ F res

α + (ε′)α(F res
1 )α ≤ F res

α + (ε′)αF res
α ,

the last inequality by concavity of the functiony 7→ yα.
This shows that̃F res

α = (1 ± ε)F res
α , since(ε′)α = ε. The

space used by this algorithm is at most

O
(

1
ε′

log m +
(

1−α
ε2 + 1

ε

)

log m + log n log m
)

= O
(

( 1
ε1/α + 1−α

ε2 + log n) log m
)

bits.

6.2 Geometric Mean Algorithm

This section describes an algorithm for estimatingF res
α in

the general update model. At a high level, the algorithm
uses a hash function to partition the stream elements into
two substreams, then separately estimates the momentFα

for the substreams. The estimate for the substream which
does not contain the heavy hitter yields a good estimate of
F res

α . We improve accuracy of this estimator by averaging
many independent trials. Detailed description and analysis
follow.

We use Li’sgeometric mean estimator[22] for estimat-
ing Fα since it is unbiased. (This property will be useful
later.) The geometric mean estimator is defined as follows.
Let k andα be parameters. We lety = R · A, whereA is
the vector representing the stream andR is ak × n matrix
whose entries are i.i.d. samples from anα-stable distribu-
tion. Define

F̃α =

∏k
j=1 |yj|

α/k

[ 2
π Γ(α

k )Γ(1 − 1
k ) sin(πα

2k )]k
.

Li analyzed the variance of̃Fα as k → ∞, however for
our purposes we are only interested in the casek = 3 and
henceforth restrict to only this case. (One can showF̃α has
unbounded variance fork < 3.) In this case, the estimator
can be computed usingO(log m) bits of space. Building on
Li’s analysis, we show the following.

Lemma 6.2. There exists an absolute constantCGM such

thatVar
[

F̃α

]

≤ CGM · E
[

F̃α

]2

.

Proof (sketch). Define the functionV : R
+ → R by

V (α) =

[

2
π Γ(2α

3 )Γ(1
3 ) sin(πα

3 )
]3

[

2
π Γ(α

3 )Γ(2
3 ) sin(πα

6 )
]6 − 1

In the full version of the paper we show

lim
α→0

V (α) =
Γ
(

1
3

)3

Γ
(

2
3

)6 − 1

Li shows in [22] that the variance of the geometric mean
estimator withk = 3 is V (α)F 2

α. As Γ(z) andsin(z) are
continuous forz ∈ R+, so isV (α). Furthermore, since
limα→0 V (α) exists, we defineV (0) to be this limit. Thus
V (α) is continuous on[0, 2], and the extreme value theo-
rem implies there exists a constantCGM such thatV (α) ≤
CGM on [0, 2]. �

Let r denote the number of independent trials. For each
j ∈ [r], the algorithm picks a functionhj : [n] → {0, 1}
uniformly at random. Forj ∈ [r] and l ∈ {0, 1}, define
Fα,j,l =

∑

i:hj(i)=l |Ai|
α. This is theαth moment for the

lth substream during thejth trial.
For eachj and l, our algorithm computes an estimate

F̃α,j,l of Fα,j,l using the geometric mean estimator. We also
run in parallel the algorithm of Fact 6.1 to discover which
i ∈ [n] is the heavy hitter; henceforth assumei = 1. Our
overall estimate forF res

α is then

F̃ res
α =

2

r

r
∑

j=1

F̃α,j,1−hj(1).

The space used by our algorithm is simply the space re-
quired forr geometric mean estimators and the one heavy
hitter algorithm. The latter usesO

(

(ε−1 + log n) log m
)

bits of space. Thus the total space required isO
(

(r+ε−1 +

log n) log m
)

bits.

To analyze the algorithm, defineR =
⌈

log1+ ε
c1

m
⌉

.

DefineIz =
{

i : (1 + ε
c1

)z ≤ |Ai| < (1 + ε
c1

)z+1
}

for

0 ≤ z ≤ R. Let z∗ satisfy (1 + ε
c1

)z∗

≤ |A1| <

(1 + ε
c1

)z∗+1. For 1 ≤ j ≤ r and0 ≤ z ≤ R, define
Xj,z =

∑

i∈Iz
1hj(i) 6=hj(1). To analyze thejth trial, we

need the following simple claim.

Claim 6.3. E
[

2 · Fα,j,1−hj(1)

]

=
(

1 + O(ε)
)

· F res
α .

We now show concentration forXz := 1
r

∑

1≤j≤r Xj,z.
By independence of thehj ’s, Chernoff bounds show that
Xz = (1 ± ε) E [ Xz ] with probability at least1 −
exp(−Θ(ε2r)). This quantity is at least1 − 1

8(R+1) if

we chooser = c2

⌈

ε−2(log log ||A||1 + log(c3/ε))
⌉

. The
good eventis the event that, for allz, Xz = (1±ε) E [ Xz ];
a union bound shows that this occurs with probability at



least7/8. So suppose that the good event occurs. Then a
calculation analogous to Claim 6.3 shows that

∑

j

2

r
· Fα,j,1−hj(1) =

(

1±O(ε)
)

· F res
α . (6.1)

Recall thatF̃ res
α =

∑r
j=1

2
r F̃α,j,1−hj(1). Since the geo-

metric mean estimator is unbiased, we also have that

E
[

F̃ res
α

]

= E





∑

j

2

r
Fα,j,1−hj(1)



 . (6.2)

We conclude the analysis by showing that the random vari-
ableF̃ res

α is concentrated. By Lemma 6.2 applied to each
substream, and properties of variance, we have

Var
[

F̃ res
α

]

=
4

r2

r
∑

j=1

Var
[

F̃α,j,1−hj(1)

]

≤
4 CGM

r
· E
[

F̃α,j,1−hj(1)

]2

≤
CGM

r
· E
[

F̃ res
α

]2

.

Chebyshev’s inequality therefore shows that

Pr
[

F̃ res
α = (1± ε) E

[

F̃ res
α

] ]

≥ 1−
CGM

ε2 r
> 6/7,

by appropriate choice of constants. This event and the good
event both occur with probability at least3/4. When this
holds, we have

F̃ res
α = (1± ε) E

[

F̃ res
α

]

= (1± ε) E





∑

j

2

r
Fα,j,1−hj(1)





=
(

1±O(ε)
)

· F res
α ,

by Eq. (6.2) and Eq. (6.1).

7 Estimation of Rényi and Tsallis Entropy
This section summarizes our algorithms for estimating
Tsallis entropy. These algorithms are used as subroutines
for estimating Shannon entropy in Section 5. Our tech-
niques can also be used to estimate Rényi entropy. The
algorithms presented here may be of independent interest.

The techniques we use for both the entropies are almost
identical. In particular, to compute an additive approxima-
tion of Tα or Hα, for α ∈ (0, 1) ∪ (1, 2], it suffices to com-
pute a sufficiently precise multiplicative approximation of
theα-th moment. Due to space constraints, we only sketch
the proofs for Tsallis entropy estimation. The complete
proofs for both Rényi and Tsallis entropy appear in the full
version.

7.1 Additive Approximation
Theorem 7.1. There is a streaming algorithm that com-
putes an additiveε-approximation of Rényi entropy in

O
(

log m
|1−α|·ε2

)

bits of space for anyα ∈ (0, 1) ∪ (1, 2].

Theorem 7.2. There is a streaming algorithm for additive
approximation of Tsallis entropyTα using

• O
(

n2(1−α) log m
(1−α)ε2

)

bits, forα ∈ (0, 1).

• O
(

log m
(α−1)ε2

)

bits, forα ∈ (1, 2].

Proof. If α ∈ (0, 1), then because the functionxα is con-
cave, we get by Jensen’s inequality

n
∑

i=1

xi
α ≤ n ·

(

1

n

)α

= n1−α.

If we compute a multiplicative(1 + (1 − α) · ε · nα−1)-
approximation to theαth moment, we obtain an additive
(1 − α) · ε-approximation to(

∑n
i=1 xα

i ) − 1. This in turn
gives an additiveε-approximation toTα. By Fact 2.1,

O

((

1− α

((1− α) · ε · nα−1)2
+

1

(1 − α) · ε · nα−1

)

log m

)

bits of space suffice to achieve the required approxi-
mation to theαth moment. This bound simplifies to
O(n2(1−α) log m/((1− α)ε2)) bits.

Forα > 1, the valueFα/||A||α1 is at most1, so it suffices
to approximateFα to within a factor of1 + (α− 1) · ε. For
α ∈ (1, 2], again using Fact 2.1, we can achieve this using
O(log m/((α− 1)ε2)) bits of space. �

7.2 Multiplicative Approximation
Multiplicative approximation of Tsallis entropy is more dif-
ficult than additive approximation, because a single moment
approximation is not sufficient. Nevertheless, we prove the
following theorem.

Theorem 7.3. There is a streaming algorithm for multi-
plicative (1 + ε)-approximation of Tsallis entropy for any
α ∈ (0, 1) ∪ (1, 2] using Õ

(

log m/(|1− α|ε2)
)

bits of
space.

Proof (sketch). We show that if allxi ≤ 5/6, then
Tα(x) ≥ C, for some absolute constantC. Therefore, if
all xi ≤ 5/6, thenTα(x) is sufficiently large, and additive
approximation with errorε · C gives a good multiplicative
approximation ofTα(x).

Assume now that there isxj ≥ 2/3. Let A = xα
j − 1

andB =
∑

i6=j xα
i . We show that the sum of sufficiently

good multiplicative approximations toA andB gives a mul-
tiplicative approximation toA + B =

∑

xα
i − 1, which is

a value that immediately yields a multiplicative approxima-
tion to Tsallis entropy. This follows from the fact that if



there is a heavy element, thenA ≤ 0 andB ≥ 0 are val-
ues of different magnitudes, and small errors on them are
still relatively small with respect to|A + B|. We prove that
to multiplicatively approximateA in this case, it suffices
to have a multiplicative approximation toF res

1 = 1 − xj .
Further,B = F res

α . Hence, we can use the algorithms of
Section 6.1 to approximateA andB. We also use these al-
gorithms to check if there is a heavy element, and to decide
which of the two cases,maxi xi ≤ 5/6 andmaxi xi ≥ 2/3
holds. �

Tsallis entropy can be efficiently approximated both
multiplicatively and additively also forα > 2, but we omit
a proof of that fact in this version of the paper.

Using similar techniques, one can also obtain an algo-
rithm for Rényi entropy.

Theorem 7.4. There is a streaming algorithm for
multiplicative (1 + ε)-approximation of Rényi entropy
for any α ∈ (0, 1) ∪ (1, 2]. The algorithm uses
Õ
(

log m/(|1− α|ε2)
)

bits of space.

Theorem 7.4 is in fact tight in the sense that(1 + ε)-
multiplicative approximation ofHα for α > 2 requires
polynomial space, as seen in the following theorem. Since
the proof follows very closely along the lines of Theorem
3.1 of [2] but using the stronger multiparty disjointness
lower bound of [9], we omit the proof here.

Theorem 7.5. For any constantα > 2, any random-
ized constant-pass streaming algorithm which(1 + ε)-
approximatesHα(X) requiresΩ(n1−2/α−2ε/ logn) bits of
space. If the algorithm is allowed only one pass, the lower
bound increases toΩ(n1−2/α−2ε) bits.

8 Modifications for General Update Streams
The algorithms described in Section 5 and Section 7 are for
the strict turnstile model. They can be extended to work in
the general update model with a few modifications.

First, we cannot efficiently and exactly compute
‖A‖1 = F1 in the general update model. However, a
(1 + ε)-multiplicative approximation can be computed in
O(ε−2 log m) bits of space by Fact 2.1. In Section 3 and
Section 5.2, the value of‖A‖1 is used as a normalization
factor to scale the estimate ofFα to an estimate of

∑n
i=1 xα

i .
(See, e.g., Eq. (3.1) and Eq. (5.3).) However,

F̃α

(F̃1)α
=

(1± ε) · Fα
(

(1± ε) · F1

)α =
(

1±O(ε)
)

·
Fα

Fα
1

,

so the fact thatF1 can only be approximated in the gen-
eral update model affects the analysis only by increasing
the constant factor that multipliesε. A similar modification
must also be applied to all algorithms in Section 7; we omit
the details.

Next, the multiplicative algorithm in Section 5.3 needs
to compute a multiplicative estimate ofT (yi) using The-

orem 7.3. In the general update model, a weaker result
than Theorem 7.3 holds: we obtain a multiplicative(1+ ε)-
approximation of Tsallis entropy for anyα ∈ (0, 1)∪ (1, 2]
usingÕ

(

log m/(|1− α| · ε)2
)

bits of space. The proof is
nearly identical to that of Theorem 7.3, except that the mo-
ment estimator of Fact 2.1 uses more space, and we must
use the residual moment algorithm of Section 6.2 instead of
Section 6.1. Similar modifications must be made to Theo-
rem 7.1, Theorem 7.2 and Theorem 7.4, with a commensu-
rate increase in the space bounds.

9 Conclusion
We hope that the techniques from approximation theory that
we introduce may be useful for streaming and sketching
other functions. For example, Cormode et al. [10] observe
that Fε/ log m = (1 ± O(ε))L0, whereL0, or the “Ham-
ming norm”, is the number of non-zero frequencies in the
vectorA. They thus reduceL0 estimation to estimating a
single moment withp near0. Using our techniques from
Section 4 together with bounds on the higher order deriva-
tives of Fp as a function ofp, one can easily show that a
(1 ± ε)-approximation ofL0 can be obtained using̃O(1)
moment estimationsFpi for pi = Θ̃(1/ logm) for eachi,
which can be useful when moment estimations nearp = 0
are expensive (though better methods are already known for
L0 estimation).

Also, consider the following functionGα,k(x) =
∑

i xα
i (log n)k, wherek ∈ N andα ∈ [0,∞). One can

show that

lim
β→α

Gα,k(x) −Gβ,k(x)

α− β
= Gβ,k+1(x).

Note thatGα,0(x) is theαth moment ofx, and one can at-
tempt to estimateGα,k+1 by computingGβ,k for β = α and
β close toα. It is not unlikely that our techniques can be
generalized to estimation of functionsGα,k for α ∈ (0, 2].
Can one also use our techniques for approximation of other
classes of functions?
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