
Finding an Optimal Tree Searching Strategy in Linear Time

Shay Mozes
Brown University

shay@cs.brown.edu

Krzysztof Onak∗

MIT, CSAIL
konak@mit.edu

Oren Weimann
MIT, CSAIL

oweimann@mit.edu

Abstract

We address the extension of the binary search technique
from sorted arrays and totally ordered sets to trees
and tree-like partially ordered sets. As in the sorted
array case, the goal is to minimize the number of
queries required to find a target element in the worst
case. However, while the optimal strategy for searching
an array is straightforward (always query the middle
element), the optimal strategy for searching a tree is
dependent on the tree’s structure and is harder to
compute. We present an O(n)-time algorithm that
finds the optimal strategy for binary searching a tree,
improving the previous best O(n3)-time algorithm. The
significant improvement is due to a novel approach for
computing subproblems, as well as a method for reusing
parts of already computed subproblems, and a linear-
time transformation from a solution in the form of
an edge-weighed tree into a solution in the form of a
decision tree.

1 Introduction

The binary search technique is a fundamental method
for finding an element in a sorted array or a totally
ordered set. If we view the sorted elements as a line
of vertices connected by edges, then searching for the
target element is done by querying edges such that a
query on edge e tells us which endpoint of e is closer
to the target. It is well known that in such a search,
the optimal way to minimize the number of queries
in the worst case is to perform a binary search (see
Knuth’s book [10]). This technique repeatedly queries
the middle edge of the searched segment and eliminates
half of the segment from further consideration. Binary
search can therefore be described by a complete decision
tree where every decision node corresponds to a query
on some edge and has degree two, associated with the
two possible outcomes of the query.

The problem of locating an element in a sorted array
naturally generalizes to the problem of locating a vertex
in a tree [2, 11, 15]. Again, we are allowed to query an
edge to find out which of each endpoints is closer to

∗Supported in part by NSF grant 0514771. Part of the research

was done during a summer internship with Google.

the required vertex. Another natural generalization is
searching in partially ordered sets (posets) rather than
totally ordered sets [2, 3, 12, 13]. When searching a
poset for a target element x, the queries are of the form
“x ≤ y?” for some member y of the poset. A negative
answer to a query means that either x > y or that x
and y are incomparable. These two generalizations are
equivalent when the partial order can be described by a
forest-like diagram.

Both search problems can be formalized as follows.
Given a tree (or a partially ordered set), construct a
decision tree of the lowest possible height that enables
the discovery of every target element. A decision node
corresponds to a query and has degree two associated
with the two possible outcomes of the query. Unlike
searching in a sorted array or a totally ordered set, the
optimal decision tree is now not necessarily complete
and depends on the structure of the input tree (or the
partial order diagram). This is illustrated in Figure 1
for the case of searching a tree. A searching strategy
based on this decision tree is called the optimal strategy
and is guaranteed to minimize the number of queries in
the worst case.

Carmo et al. [3] showed that finding an optimal
strategy for searching in general posets is NP-hard, and
gave an approximation algorithm for random posets.
For trees and forest-like posets, however, an optimal
strategy can be computed in polynomial time as was
first shown by Ben-Asher, Farchi, and Newman [2].
Ben-Asher et al. gave an O(n4 log3 n)-time algorithm
that finds an optimal strategy. This was recently im-
proved to O(n3) by Onak and Parys [15] who intro-
duced a general machinery for bottom-up constructions
of optimal strategies. Laber and Nogueira [11] gave
an O(n log n)-time algorithm that produces an additive
lg n-approximation. This yields a 2-multiplicative ap-
proximation, since the depth of a valid decision tree is
always at least lg n.

Our Results. In this paper, we follow [2, 11, 15]
and focus on trees and forest-like posets. That is, we are
interested in computing the optimal strategy for search-
ing a tree where querying an edge tells us which end-
point of the edge is closer to the target. We present
a worst-case O(n)-time algorithm for this problem, im-

proving the previous best O(n3)-time algorithm. Our
result requires a novel approach for computing subprob-
lems in the bottom-up framework of [15]. In addition to
proving the correctness of this approach, we introduce
two new ideas that are crucial for obtaining a linear-
time algorithm. The first is a method for reusing parts
of already computed subproblems, and the second is a
linear-time transformation from an edge-weighed tree
into a decision tree. Our result improves the running
time of algorithms for searching in forest-like partial or-
ders (cf. [15]) as well.

Applications. One practical application of our
problem is file system synchronization. Suppose we have
two copies of a file system on two remote servers and we
wish to minimize the communication between them in
order to locate a directory or a file at which they differ.
Such a scenario occurs when a file system or database
is sent over a network, or after a temporary loss of
connection. The two servers can compare directory or
file checksums to test whether two directories or files
differ. Such a checksum test can detect if the fault is in
a subdirectory or in a parent directory. Directories are
normally structured as rooted trees and a checksum test
on a rooted subtree is equivalent to an edge query on an
unrooted subtree. This paper assumes edge queries on
unrooted trees but this is equivalent to subtree queries
on rooted trees.

Software testing or “bug detection” is another mo-
tivation for studying search problems in posets (and in
particular in trees). Consider the problem of locating
a buggy module in a program where dependencies be-
tween modules constitute a tree. For each module we
have a set of exhaustive tests that verify correct behav-
ior of the module. Such tests can check, for instance,
whether all branches and statements in a given mod-
ule work properly. Minimizing the worst-case number
of modules that we test in order to locate the buggy
module reduces to our searching problem.

Related research. Many other extensions of bi-
nary search are reported in the literature. These in-
clude querying vertices rather than edges [15], Fibonac-
cian search [8], interpolation search [16], searching when
query costs are non-uniform [4, 9, 14], and searching an
order ideal in a poset [12, 13]. Some other fundamental
algorithmic problems for posets that have been studied
include sorting, selection, computing a linear extension,
and computing the heights of all elements [5, 7].

2 Preliminaries — Machinery for Solving Tree

Searching Problems

In this section we review the techniques required for
a bottom-up construction of the optimal strategy as
introduced by Onak and Parys [15].

2.1 Strategy functions. Recall that given a tree
T = (V, E), our goal is to find an optimal strategy
for searching in T . This strategy should minimize the
worst-case number of queries required to locate a target
vertex, or equivalently, correspond to a correct decision
tree of the lowest possible height. Onak and Parys
showed that finding an optimal strategy is equivalent to
finding an optimal strategy function. A strategy function
f : E → Z+ is a function from the set of edges into
the set of positive integers that satisfies the following
condition. If f takes the same value on two different
edges e1 and e2, then on the simple path from e1 to e2,
there is an edge e3 on which the function takes a greater
value (i.e. f(e3) > f(e1) = f(e2)). An optimal strategy
function is one with the lowest possible maximum. We
make use of the following lemma.

Lemma 2.1. ([15]) For every tree T , the worst-case
number of queries in an optimal searching strategy in
T equals the lowest possible maximum of a strategy
function on T .

The intuition behind strategy functions is that if f(e) =
k, then when we query the edge e we have at most k
more queries until we find the target vertex. It turns
out that a strategy function f with maximum k easily
transforms into a searching strategy with at most k
queries in the worst-case. The first query in the strategy
being constructed is about the edge with the maximal
value k. If we remove this edge, the tree breaks into
two subtrees and the problem reduces to finding the
target vertex in one of the subtrees, say T ′. The second
query is about the edge with maximal value in T ′ and
we continue recursively. By definition of the strategy
function f , in the ith query there is a unique edge
with maximal value. An example of a strategy function
and the corresponding search strategy is illustrated
in Figure 1. In section 5 we present an O(n)-time
algorithm that transforms a strategy function into a
decision tree.

2.2 Bottom-up computation. Our objective is
thus to find an optimal strategy function f . To do so,
we arbitrarily root the tree T , and compute f(e) for
every e ∈ E in a bottom-up fashion. More formally,
suppose we have a node u with children u1, . . . , uk con-
nected to u by the edges e1, . . . , ek. Assuming that f has
already been computed for all T (u1), . . . , T (uk) (where
T (u) is the subtree rooted at u), we extend the function
to T (u) by computing f(e1), . . . , f(ek) without chang-
ing f(e) for any e 6∈ {e1, . . . , ek}. This means that the
restriction to T (ui) of our desired optimal strategy func-
tion for searching T (u) is optimal for searching T (ui) for
every 1 ≤ i ≤ k.

To describe this extension we need the notion of
visibility. We say that an edge e is visible from a vertex

a

bc

d

e

lk

i

j

hgf

(a)
1

2
3

4
1

3 1 12

2 1

(b)

(b,e)?

(a,b)? (e,f)?

(b,c)? (j,k)? (g,h)?

(b,d)? (e,j)? (k,l)?

a

c (f,g)? (h,i)?

b e

lk

4
a b

cb

e f

j k g h

k l

je

e j

gf

f g

ih

h i

db

b d

Figure 1: (a) a sample input tree with its optimal strat-
egy function. (b) the corresponding optimal decision
tree. The height of the decision tree is equal to the
maximum value assigned by the strategy function

u, if on the simple path from u ending with the edge
e there is no edge e′ such that f(e′) > f(e). In other
words, the visible values from u are those which are
not “screened” by greater values of f . Note that by the
definition of a strategy function, each value of f is visible
from u at most once. The enumeration in descending
order of all values visible from u in T (u) is called the
visibility sequence of u.

Note that in order to extend the strategy functions
on T (u1), T (u2), . . . T (uk) to a correct strategy function
on the entire T (u), it suffices to know just the visibility
sequence of each ui. Denote by si the visibility sequence
at ui in T (ui). We want to assign values to the edges
e1 to ek so that we achieve a correct strategy function
on T (u). We need to make sure that:

• For every two edges ei 6= ej, f(ei) 6= f(ej).

• For every edge ei, f(ei) is not present in si.

• For every edge ei, if f(ei) is present in sj , then
f(ej) > f(ei).

• If the same value v appears in two visibility se-
quences si and sj , where i 6= j, then the maximum
of f(ei) and f(ej) is greater than v.

One can easily verify that these conditions suffice to
obtain a valid extension of the strategy functions on
T (u1), . . . , T (uk) to a strategy function on T (u).

Consider a lexicographical order on visibility se-
quences. A valid extension that yields the smallest visi-
bility sequence at u is called a minimizing extension. An
extension is called monotone if increasing the visibility
sequences at the children does not decrease the visi-
bility sequence which the extension computes for their
parent. Onak and Parys proved that extensions that
are both minimizing and monotone accumulate to an
optimal strategy function. They further showed that,
for the tree searching problem being considered, every
minimizing extension is also monotone.

Lemma 2.2. ([15]) The bottom up approach yields an
optimal strategy if at every node we compute a minimiz-
ing extension.

3 Computing a Minimizing Extension

In this section we describe a novel algorithm for com-
puting a minimizing extension. An efficient implemen-
tation of this algorithm, presented in Section 4, yields
an O(n)-time algorithm for the computation of an op-
timal strategy function.

3.1 Algorithm Description. We first describe the
intuition behind the algorithm, and introduce helpful
notions. Along the explanation we refer to the relevant
line numbers in the pseudocode of the algorithm, which
is given in Figure 2.

Consider a vertex u with k children u1, u2, . . . , uk,
connected to u along edges e1, e2, . . . , ek respectively.
Let S = {s1, s2, . . . , sk} be the set of already computed
visibility sequences at the children. Consider the largest
value that appears in more than one of the visibility
sequences. Denote this value v (Line 6). In a sense, v is
the most problematic value, since any valid assignment
of values to the edges must assign some value w >
v, to one of the edges corresponding to the visibility
sequences in which v appears.

What would be a good value for w? We say that a
positive value is free if it is not visible from u. The set
of free values changes as we modify the values assigned
to e1, e2, . . . , ek during the execution of the algorithm.
Obviously, choosing a value which is not free for w will
not result in a valid visibility sequence. Our algorithm
therefore chooses the smallest free value greater than v
as w (Line 7). But to which edge should w be assigned?

If we assign w to an edge ei, all values in si that
are smaller than w become “hidden” from all the edges
not in T (ui). In other words, these values, which were
not free until w was assigned (they appeared in si),
may now become free, and will not contribute to the
resulting visibility sequence at u. This means that we
should assign w to such an edge so that the greatest
possible values will be freed. In other words, we should
assign w to an edge whose visibility sequence contains

1: let all gi = 0
2: let all entries of the array U contain the value free

3: add the value 0 to every si

4: v ← largest value in all si

5: while not all edges assigned a positive value:
6: if v is exposed at least twice or v = 0:
7: w ← smallest i s.t. i > v and U [i] is free

8: T ← {i ∈ {1, . . . , k} : si contains an exposed value smaller than w}
9: j ← any i ∈ T such that si ≥w si′ for every i′ ∈ T

10: U [w]← taken

11: for all values w′ in sj such that w′ is exposed and v < w′ < w:
12: U [w′]← free

13: gj ← w
14: else
15: U [v]← taken

16: v ← largest exposed value in S smaller than v

Figure 2: Algorithm for computing a minimizing extension

the greatest elements smaller than w (Lines 8–9,13). We
call such an edge maximal with respect to w, a notion
that is formalized in Definition 3.2. It turns out that
it is worthwhile to assign w to the maximal edge with
respect to w regardless of whether this edge contains an
occurrence of the multiple value v we originally wanted
to take care of.

Once w is assigned to ei, we only care about values
in si that are greater than w. We refer to these values as
exposed values. The values in si that are smaller than
w no longer affect the visibility sequence in u (Lines 11-
12). We then repeat the same process for the largest
value currently exposed more than once in S (Lines
5,16). Note that this value may still be v, or some
other value smaller than v. The process is repeated until
no value is exposed multiple times. Note that during
this process we may decide to assign a greater value
to an edge ei that was previously assigned a smaller
value. However, as we will see, this procedure never
decreases the values we assign to the edges ei. It is
important to emphasize that the only values assigned by
the extension algorithm are to the edges ei, connecting
u to its children ui. We never change values of edges in
the subtrees T (ui). Once all values are exposed at most
once, we have to assign values to any edges that were not
yet assigned. This is done by assigning the smallest free
value according to the same considerations described
above. In Section 3.2 we prove that the values assigned
to the edges at the end of this process constitute a valid
minimizing extension.
We now formally state the necessary definitions.

Definition 3.1. (si ≥ sj) The ≥ relation denotes lex-
icographic order on visibility sequences. We define si >
sj analogously.

Definition 3.2. (si ≥v sj) We say that si is larger
than sj with respect to v, denoted si ≥v sj, if after
removing all values greater than v from both visibility
sequences, si is not lexicographically smaller than sj.
We define the relations >v and =v analogously.

For example, if s1 = {5, 1} and s2 = {3} then s1 >6 s2,
s1 >2 s2, but s2 >4 s1.

Throughout the execution of the algorithm, we
maintain values gi, which keep track of the values
assigned to the edges. Eventually, at the end of the
execution, these values describe our extension. Below
we define two different kinds of values.

Definition 3.3. (Exposed values) Let v be a value
in a visibility sequence si. During execution, we say
that v is exposed in si if v is greater than or equal to
the current value of gi. We define exposed(si) to be the
set of exposed values in si.

Definition 3.4. (Free values) A positive value v is
free at a given time during execution if at that time it is
neither exposed in any visibility sequence si, nor equals
any gi.

We keep track of the free values using the array U .
Recall that the algorithm in the form of pseudocode
is given in Figure 2.

3.2 Proof of Correctness. Let us start with a
simple observation about the algorithm (the formal
proof is given in the full version of this paper).

Observation 3.5. The algorithm has the properties:

1. The values gj never decrease.

2. If gj > 0 then gj is greater than v’s current value.

3. If gj > 0 then gj is not exposed in any of the input
sequences.

4. The current v in the algorithm is always greater
than or equal to the current largest value exposed
at least twice.

5. If gj > 0 then there are no values greater than gj

which are exposed more than once.

To be able to describe the state of the algorithm at
intermediate stages, we introduce a slightly modified
problem. This problem captures the fact that some
edges have already been assigned a value, and that our
algorithm will never decrease this value. We will discuss
a natural one-to-one correspondence between instances
of the modified problem and of the original one.

Definition 3.6. (Modified problem)

Given a set of k sequences S̄ = {s̄1, . . . , s̄k}, where
each sequence s̄i ⊆ {0, 1, . . . , n}, find a sequence of non-
negative values F = f1, . . . , fk such that:

1. (no duplicates within sequence) ∀i : fi /∈ s̄i

2. (no duplicates between sequences) ∀1 ≤ v ≤ n :
|{i : v = fi} ∪ {i : v ∈ s̄i and v > fi}| ≤ 1

3. (no decreasing assignments) ∀i : fi > 0 ⇒ fi >
min(s̄i)

The modified problem can be used to describe interme-
diate situations, where some of the edges ei were already
assigned a value.

Definition 3.7. (S̄(S, G)) Let S be the original set of
visibility sequences at the children and G = g1, . . . , gk

be the values assigned to the edges so far (gi = 0 if ei

was not assigned any value). We define the modified
problem S̄(S, G) associated with S and G as the set of

modified input sequences s̄i(si, gi)
def
= {gi}∪exposed(si).

Obviously, gi is the smallest element in s̄i(si, gi). If
gi = 0, then ei must be assigned a positive value by fi

(the first condition in definition 3.6). If gi > 0, then
we do not have to assign a value to ei, so fi may be
zero. We may, however, increase the assigned value by
choosing fi > gi if we wish to (the last condition in
definition 3.6).

Definition 3.8. (Q(S, F)) Let Q(S, F) be the set of
visible values at the root for a valid solution F of the
original problem S.

Definition 3.9. (Q̄(S̄, F)) Let Q̄(S̄, F)
def
= ∪iq̄i(s̄i, fi)

be the set of visible values at the root u for a valid

solution F of the modified problem S̄. q̄i(s̄i, fi)
def
=

{fi if fi > 0} ∪ {v : v ∈ s̄i and v > fi}.

In other words, q̄i(s̄i, fi) is the set consisting of
max(gi, fi) and all values in s̄i greater than max(gi, fi).
Note that the validity of the solution F assures that the
q̄i’s are disjoint sets.

The correspondence between intermediate situa-
tions of the original problem and inputs to the modified
problem leads to a correspondence between valid assign-
ments of the two. The formal proof of this observation
is omitted for brevity.

Observation 3.10. Let G = g1, . . . , gk be an inter-
mediate assignment in the execution of the algorithm
for input visibility sequences S = s1, . . . , sk. Let S̄ =
S̄(S, G). The minimal Q(S, F), where F ranges over
valid solutions to S and such that for each i, fi ≥ gi,
equals the minimal Q̄(S̄, F ′), where F ′ ranges over valid
solutions of S̄.

We now proceed with the proof of correctness. Consider
the running of our algorithm and let w be as in Line 7
of our algorithm. That is, if v is the maximal element
which is exposed at least twice in S, then w is the
smallest free element greater than v. Also, let G denote
the current values assigned to the edges (G is the set
of values assigned when Line 13 was executed in the
previous loops).

Lemma 3.11. In any valid assignment F for S̄(S, G),
there is a value z ∈ F such that z ≥ w.

Proof. Let F be a valid assignment for S̄. Assume,
contrary to fact, that w′ < w is the largest value in
F . If w′ ≤ v, then v appears twice in Q̄(S̄, F) in
contradiction to the validity of F (the second condition
in Definition 3.6 is violated). Otherwise, w′ > v. The
fact that w is the smallest free element greater than v
implies that w′ ∈ s̄i for some i. If fi = w′, then the
first condition in definition 3.6 is violated. Otherwise,
fi < w′, so the second condition in Definition 3.6 is
violated.

We next prove the main technical lemma which essen-
tially shows that the way our algorithm assigns values
to edges does not eliminate all optimal solutions.

Lemma 3.12. Let G = g1, . . . , gk be an intermediate
assignment in execution of the algorithm for input
visibility sequences S = s1, . . . , sk. Furthermore, let sj

be as in Line 9 of the algorithm. That is, sj contains
an exposed value smaller than w, and sj ≥w si, for any
si that has an exposed value smaller than w.

There is an optimal solution F to the problem S̄
def
=

S̄(S, G) such that fj ≥ w.

Proof. Let F ′ be an optimal solution to S̄(S, G). If
f ′

j ≥ w, we are done. Otherwise, f ′

j < w.

Case 1: If w /∈ F ′, then consider the smallest w′ in F ′

such that w′ > w. Such w′ must exist by Lemma 3.11.
Let i be such that f ′

i = w′. We know the following:

1. gi < f ′

i = w′ (by Definition 3.6, third condition).

2. F ′ does not contain any values in the range {w, w+
1, . . . , w′ − 1} (by definition of w′).

3. No value greater than or equal to w appears in S̄
more than once (by definition of w).

4. The value w does not appear in S̄ and F ′.

Consider the assignment F with fi
def
= {w if w >

gi, 0 otherwise} and fℓ
def
= f ′

ℓ for all other values of ℓ.
By the above properties, F is a valid assignment with
Q̄(S̄, F) < Q̄(S̄, F ′) in contradiction to the optimality
of F ′.

Case 2: If w ∈ F ′, then let i be such that f ′

i = w.

Case 2.1: If s̄i does not contain any values smaller
than w, then gi must be greater than w. We have
gi > w = f ′

i > 0, in contradiction to the validity of
F ′ (the third condition in Definition 3.6 is violated).

Case 2.2: If s̄i contains just a single value smaller than
w, then this value must be gi.

• If gi = 0, then we may exchange the values assigned
to ei and ej. The desired assignment F is therefore:

fj
def
= f ′

i = w, fi
def
= max{f ′

j , gj}, and fℓ
def
= f ′

ℓ for
all other values of ℓ.

• If gi > 0, then there was no need to increase the
value assigned to ei from gi to w. In particular, gi

must equal f ′

m, for some m. Otherwise, by setting
f ′

i to 0 in F ′, we would get a valid solution better
than F ′. To be able to assign gi to ei, we must
assign a different value to em. The assignment F ′′

with f ′′

m

def
= f ′

i = w, f ′′

i

def
= 0, and f ′′

ℓ

def
= f ′

ℓ, for
all other values of ℓ, is a valid assignment with
Q̄(S̄, F ′′) = Q̄(S̄, F ′). We may repeat the entire
proof with F ′′ in the place of F ′. The fact that
gm < f ′

m = gi assures us that we will not repeat
entering this case indefinitely.

Case 2.3: If s̄i contains more than one element smaller
than w, then exposed(si) is not empty, so i ∈ T in Line 8
of the algorithm.

• If exposed(sj) =wexposed(si), then by property 5
in Observation 3.5, gi = gj = 0. We may therefore
exchange f ′

j and f ′

i , and we are done.

• Otherwise, exposed(sj) >wexposed(si). To see that,
consider mi and mj , the largest exposed values
smaller than w in si and sj respectively. Since
sj ≥w si, we get that mj ≥ mi. If mj = mi, then
by property 5 in Observation 3.5, gi = gj = 0, so
si = exposed(si) 6=w exposed(sj) = sj . Therefore,
exposed(sj) >w exposed(si). Let x be the largest
value smaller than w that is exposed in sj but not in

si. Consider the assignment F with fj
def
= f ′

i = w,

fi
def
= max{f ′

j, x} and fℓ
def
= f ′

ℓ for all other values

of ℓ. Q̄(S̄, F) is not larger than Q̄(S̄, F ′), so F is an
optimal solution with fj = w. F is valid because
max{f ′

j, x} is not exposed in si. x is not exposed
in si by definition, and if f ′

j > x then f ′

j cannot be
exposed in sj since exposed(sj) >w exposed(si).

Theorem 3.13. Our algorithm finds an optimal as-
signment in finite time.

Proof. We will show that there is an optimal assignment
F = f1, . . . , fk, such that throughout the execution of
our algorithm, ∀i : gi ≤ fi, where gi are the values
assigned to the edges in Line 13 of our algorithm.

We proceed by induction on t, the number of times
Line 13 has been executed. For t = 0, gi = 0 for all
i, so the claim trivially holds. Assume that the claim
is true for t − 1 and let G = {g1, . . . , gk} be the values
assigned to the edges just before the t-th time Line 13
was executed. On the t-th time we execute Line 13,
gj will be increased by setting it to w, where w, j are
as in the conditions of Lemma 3.11 and Lemma 3.12.
Applying Lemma 3.12 with G shows that there exists
an optimal solution F which assigns fj ≥ w, as required
to prove the inductive step.

Since the algorithm keeps increasing the assigned
values gi, and since the sum of gi’s in an optimal solution
is bounded, the algorithm will eventually terminate.

4 Optimal Strategy Function in Linear Time

In this section we show that the algorithm for computing
a minimizing extension can be efficiently implemented,
so that the total time spent on the bottom-up compu-
tation of an optimal strategy function is linear in the
number of nodes. The proof is composed of two parts.
First we bound the amount of time required for the
computation of a single extension. Next, we use this
to bound the total time required to find the optimal
strategy function.

One might be tempted to think that the sum
of lengths of all visibility sequences at the children
of a node v is a lower bound on the time required
to compute a minimizing extension and the resulting
visibility sequence at v. This, in fact, is not true. An
important observation is that in many cases, the largest

values of the largest visibility sequence at the children of
v appear unchanged as the largest values in the visibility
sequence at v itself. By using linked-lists we reuse
these values when computing an extension without ever
reading or modifying them.

To state this idea accurately, we define the quanti-
ties k(v), q(v) and t(v) at each node v in the rooted tree
as follows.

• k(v) is the number of children of v.

• Let S denote the set of visibility sequences at the
children of v, and let s1 be the largest sequence in
S. We define q(v) as the sum of the largest values in
each sequence over all input sequences in S except
s1. If a sequence is empty, then we say that its
largest value is 0. If S is empty, q(v) = 0.

• Let s be the visibility sequence at v. We define t(v)
to be the largest value that appears in s but does
not appear in s1. If S is empty, t(v) = 0.

Lemma 4.1 bounds the time required to compute
a minimizing extension and the resulting visibility se-
quence. The proof constructively describes how to im-
plement each line of the algorithm. The important
points in the proof are that we never read or modify
any values greater than t(v) in s1, and that by using
the appropriate data structures, we are able to find the
desired sequence in Lines 8–9 of the algorithm efficiently.

Lemma 4.1. A minimizing extension and its resulting
visibility sequence can be computed in O(k(v) + q(v) +
t(v)) time for each node v.

Proof. We keep visibility sequences as doubly-linked
lists starting from the smallest value to the largest. This
allows us to reuse the largest values of the largest input
sequence.

We assume for simplicity that there are at least two
input sequences. If there is no input sequence, then v
is a leaf, and the corresponding visibility sequence is
empty, so we can compute it in constant time. If there
is just one input sequence, then we should assign the
smallest positive value which does not appear in the
input sequence to the edge leading to the only child
of v. We can find this value in O(t(v)) time by going
over the list representing the input sequence. We then
create a new visibility sequence that starts with this
value. The rest of the list is the same as the portion of
input visibility sequence above t(v).

Assume, without loss of generality, that s1, s2, . . .
are ordered in descending order of the largest value in
each sequence. Let l1, l2 be the largest values in s1, s2

respectively. We say that the largest value of an empty
input sequence is zero. Note that we can compute l2 in
O(k(v)+q(v)) time by simultaneously traversing all the

lists representing the input sequences until all but one
are exhausted.

We modify the algorithm so that instead of starting
from v = l1 in Line 4, we start from v equal l2.
Clearly, there are no values greater than l2 that appear
in more than one sequence, so the only difference this
modification introduces is that all the values between l2
and l1 that belong to s1 would have been marked by the
original algorithm as taken in the vector U (Line 15),
but are not marked so after this modification. We
will take care of such values when we discuss the data
structure that represents the vector U below.

Representing the vector U. The vector U is
used in the description of our algorithm to keep track
of free and taken values. It is modified or accessed
in Lines 2, 7, 12 and 15. We maintain the vector U
using a stack. Values on the stack are free values. The
stack always keeps the following invariant: values on the
stack are ordered from the largest at the bottom to the
smallest at the top. We do not mark all elements as
free as in Line 2. Instead, the stack is initially empty,
and if, when we decrease v in Line 16, we encounter a
value that is not exposed at all, we insert this value into
the stack. When implementing the loop in Lines 11–
12, we insert to the stack all values greater than v that
are currently exposed, and are about to become free.
Since all of them are smaller than the current w, and
as we will see below, all values on the stack are greater
than the current w, we may insert them in decreasing
order to the stack and maintain the stack invariant. We
now describe how to find the value w in Line 7. If the
stack is not empty, we pop the value from the top of the
stack and use it as w since this is the smallest free value
greater than v. If the stack is empty, then we must find
a free value greater than l2 (remember that such values
were not inserted into the stack because we changed
Line 4 to start from v = l2). In this case, we traverse
the list representing s1 to find the smallest value that
does not appear in it. In total, we will not spend more
than O(t(v)) time on traversing s1 in order to find such
values.

The next two data structures we describe are used
to efficiently find the correct sj in Lines 8–9.

Lists of sorted sequences. For each i between 0
and l2, we maintain a list Li of the visibility sequences
sorted in descending order according to ≤i. Moreover,
the following invariant always holds: a sequence sj

appears in Li if the greatest value in sj is at least i,
and there is an exposed value in sj that is not greater
than i.

Initially, we create the lists as follows. We use a
modification of radix sort. L0 is simply the list of all
sequences in an arbitrary order. To create Li, we take
Li−1 and create two lists, L+

i and L−

i . L+
i contains all

the sequences in Li−1 that contain i, and L−

i contains

all the sequences in Li−1 that do not contain i, but
do contain a value greater than i. In both new lists,
sequences occur in the same order as in Li−1. Li is a
concatenation of L+

i and L−

i . By induction, Li contains
sequences in descending order according to ≤i. The
total length and total setup time of all the lists Li is
O(k(v) + q(v)). Within the same time constraints we
keep pointers from each sequence to its occurrences in
the lists Li, which will be used to remove them from
the lists in constant time per removal. To maintain
the invariant, we have to update the lists if at some
point gj is increased in Line 13. When this happens,
we remove sj from all Li such that i is smaller than the
smallest exposed value in sj . If the new value of gj is
greater than the largest value in sj , then we remove sj

from all the lists. Since initially, the total size of the
lists Li is O(k(v) + q(v)), we do not spend more than
O(k(v) + q(v)) time on modifying the lists along the
entire computation of the extension.

Counters of long sequences with exposed

values. We introduce one more structure. For each i
from 0 to l2, let Ci keep track of the number of sequences
whose maximal value is exposed and not smaller than
i. We need to update this structure only if we set gj in
Line 13 with a value greater than the maximal exposed
value, m, in sj . If this happens, we subtract 1 from all
C0 to Cm (certainly, if m > l2, we stop at Cl2). Since
this happens at most once for each visibility sequence,
and by the definition of k(v) and q(v), we spend at most
O(k(v) + q(v)) time on all such subtractions.

Finding the correct sj in Line 9. We can finally
describe how to find the correct sequence sj in Lines 8-9.
Suppose first that w is at most l2.

• If Lw is empty, then all the sequences corresponding
to indices in T have their largest exposed values
smaller than w. To find the correct sj , we start
from C0 and look for i such that Ci+1 = Cw,
but Ci > Cw. The first sequence in Li is the
required sequence. This is true since there are no
sequences with exposed values between i and w,
and all sequences with an exposed value of i are
in Li, and the first sequence in Li is the largest
sequence with an exposed value i with respect to i
and therefore also with respect to w. Each sequence
can be found this way at most once because once
it is found and assigned the value w, it no longer
has any exposed values. Therefore, over the entire
computation of the extension we pay for this case
at most O(k(v) + q(v)).

• Suppose now that Lw is not empty. We look at
the first, and largest with respect to w, sequence
s∗ in Lw. It may be the case that there is a greater
sequence with respect to w among the ones that
have an exposed value smaller than w, but that the

maximal value of this sequence is also smaller than
w, and therefore, this sequence does not appear
in Lw. Let m be the maximal value in s∗ that
is smaller than w. If Cm = Cw, then we did not
miss any sequence, and s∗ is indeed the required
sequence. Note that we found it in O(1) time.
If Cm > Cw, but Cm+1 = Cw, then m is the
largest exposed value smaller than w, and the first
sequence in Lm is the required sequence (again we
have found the right sequence in constant time). If
both Cm and Cm+1 are greater than Cw, then there
exists a sequence that has an exposed value greater
than m and smaller than w that is not present in
Lw. We find the largest exposed value i smaller
than w as in the case of an empty Lw. Note that
this value is at the same time the largest value of
the first sequence in Li. As was the case for an
empty Lw, the desired sequence is the first one in
Li, and the total time spent on this case is at most
O(k(v) + q(v)).

Now assume that w is greater than l2. If s1, the
largest sequence, contains an exposed value smaller than
w, then s1 is the right sequence. We may keep track
of the smallest exposed value in s1 greater than l2 in
no more than O(t(v)) time. Then, we can check if
this is the case in constant time. If s1 has no exposed
values between l2 and w, we proceed as in the case of
w ≤ l2, since it suffices to find the maximal sequence
with respect to l2.

Conclusion. We have already presented fast im-
plementation of most of the steps of our algorithm. The
remaining Lines 4, 6, and 16 can be efficiently imple-
mented as follows. First, as we have already mentioned,
we initialize v in Line 4 to l2 instead of l1. When we
look for the next value of v, we simultaneously traverse
the lists representing all sequences whose maximal ele-
ment is at least v, and as v decreases we include into our
working set new sequences that become relevant since
v is their largest value. For each v we consider, we can
check in constant time if there are such new relevant
sequences, if we sort the sequences according to their
maximum values less than l2 in O(k(v) + q(v)) time at
the beginning of the algorithm. The total time spent
on decreasing v is at most O(k(v) + q(v)). When we
find a new v, we count the number of times it is ex-
posed, and we update this counter as some of them are
removed. This way we implement the conditional state-
ment in Line 6 efficiently. Finally, the total number of
times we increment the value of gi at all edges is at most
k(v)+q(v)+t(v), because each time at least one value in
the corresponding sequence becomes unexposed. After
we have computed the minimizing extension we create
the new visibility sequence at v from the assigned values
gi and the exposed values we encounter while simulta-

neously traversing all visibility sequences until we reach
the smallest value in s1, the largest visibility sequence,
that is greater than l2 and than any gi. This takes
O(k(v)+ q(v)+ t(v)) time. To this newly created linked
list we link the remaining unscanned portion of s1 in
constant time. We have thus shown the total amount
of time required to compute the extension and the re-
sulting visibility sequence is thus O(k(v) + q(v) + t(v)).

Theorem 4.2. An optimal strategy function can be
computed in linear time.

Proof. Recall that we arbitrarily root the input tree.
For every node v, given the visibility functions and
sequences on the subtrees rooted at the children of v, we
compute a minimizing extension of them to a function
and a visibility sequence at the subtree rooted at v. By
Lemma 4.1, this takes O(k(v)+q(v)+t(v)) time at each
node v. Eventually, according to Lemma 2.2, we get an
optimal strategy function. The total computation thus
takes

O

(

∑

v

k(v) + q(v) + t(v)

)

.

Obviously, the total number of sequences that are
used in the computation of different sequences is n− 1,
that is,

∑

k(v) = n− 1.
We next bound the sums of q(v) and t(v). We first

show that
∑

t(v) ≤ 2(n−1)+
∑

q(v), which implies that
it suffices to bound q(v). Recall that t(v) is the largest
new value that appears in the largest visibility sequence.
Let l2(v) be the maximal value in the second largest
sequence, or 0 if there is no such sequence or if it is
empty. Obviously, l2(v) ≤ q(v) for every node v. What
is the sum of all t(v)− l2(v)? If t(v)− l2(v) > 0, then at
some point in our algorithm we assign t(v) to one of the
edges. This means that all the values l2(v)+1 to t(v)−1
are taken at that moment. Each of them is taken either
by a value assigned to one of the new edges or by an
exposed value in the largest input sequence. If there are
indeed exposed values between l2(v) + 1 and t(v) in the
largest input sequence, then our algorithm assigns t(v)
to the edge corresponding to the largest sequence, so all
of these exposed values will not be visible in subsequent
computations at the ancestors of v. It follows that each
edge contributes to the sum of all t(v) − l2(v) at most
once in each case. Hence,

∑

v

t(v) =
∑

v

t(v)−l2(v)+
∑

v

l2(v) ≤ 2(n−1)+
∑

v

q(v).

Now, it suffices to bound the sum of all q(v). We
show by induction that the sum of all q(v) in the subtree
T (v) rooted at v is at most n(v)−r(v)−1, where n(v) is
the number of nodes in T (v), and r(v) is the maximum

value in the visibility sequence computed for v. If v is a
leaf, then q(v) = 0, n(v) = 1, and r(v) = 0, that is, our
claim holds. Suppose that v has k = k(v) children, and
that the claim holds for each of them. Let u1, u2, . . . , uk

be the children of v. Assume, without loss of generality,
that u1 has the largest visibility sequence among the
children of v. This implies that r(v) ≤ r(u1) + k, since
we can create a valid extension by assigning the values
r(u1) + 1 to r(u1) + k to the edges between v and its
children. Then,

∑

v′∈T (v)

q(v′) =
k
∑

i=2

r(ui) +
k
∑

i=1

∑

u′∈T (ui)

q(u′)

≤

k
∑

i=2

r(ui) +

k
∑

i=1

n(ui)− r(ui)− 1

= (n(v)− 1)− r(u1)− k ≤ n(v) − r(v) − 1.

This concludes the inductive proof and implies that
∑

v q(v) ≤ n− 1. Putting everything together we get

∑

v

k(v)+q(v)+t(v) ≤ (n−1)+(n−1)+3(n−1) = O(n).

Thus proving that the time required to compute the
optimal strategy function along with the intermediate
visibility sequences at all nodes is linear in n.

5 From a Strategy Function to a Decision Tree

in Linear Time

In this section we show how to construct an optimal
decision tree in linear time using an optimal strategy
function. We begin with some additional definitions and
assumptions. To avoid confusion between the input tree
and the decision tree we will refer to the decision tree by
the acronym DT. Each node in DT represents an edge
in the input tree. We refer to each node in DT by the
edge in the input tree which it represents. Let r be the
root of the tree. We introduce an additional node r′,
and connect it to r. We assign the value ∞ to the edge
(r′, r), and from now on we treat r′ as a root of the tree.
For an edge e, let top(e) denote the end point of e closer
to the root of the tree and bottom(e) the end point of
e farther from the root. The node e in DT will have
exactly two children, one for the case when the query
about e returns top(e) and the other for the case when
it returns bottom(e).

Initially, the nodes in DT are disconnected. We now
describe an algorithm that uses the computed strategy
function and visibility sequences to connect the nodes
in DT. We assume that along with each value in each
visibility sequence we keep a link to the edge to which
that value is assigned. Clearly, this can be done within
the same time complexity.

5.1 The Algorithm. We processes all edges of the
input tree in any order. For each edge e, let s be the
visibility sequence at bottom(e).
If s contains no values smaller than f(e), then

(1) set bottom(e) as the solution in DT when the query
about e returns bottom(e).

Otherwise, let v1 < v2 · · · < vk be the values smaller
than f(e) in s, and let ei be the edge vi is assigned to.

(2a) set node ek in DT as the solution when the query
on e returns bottom(e).

(2b) for every 1 ≤ i < k set the node ei in DT as the
solution when the query on ei+1 returns top(ei+1).

(2c) set top(e1) to be the solution in DT when the query
on e1 returns top(e1).

Finally, after applying the above procedure to all edges
in the input tree, the root of DT is the only child of the
DT node (r′, r).

5.2 Correctness and Time Complexity. Let e be
an arbitrary edge. We prove that in DT, the children
of e corresponding to the answers top(e) and bottom(e)
are assigned correctly and exactly once. It is easy to
see that the algorithm assigns bottom(e) exactly once
– when we process edge e. Recall that if the query
on e returns bottom(e), then the next query should
be on the edge with largest value smaller than f(e)
which is visible from bottom(e) in the subtree rooted
at bottom(e). This is done in (2a). If there is no such
value, there is no next query either, and bottom(e) is the
solution to the searching problem. This case is handled
in (1). Therefore, bottom(e) is assigned correctly and
exactly once for each e in the input tree.

We now show that top(e) is also assigned correctly
and exactly once. Let e′ be the first edge with value
greater than f(e) on the path from top(e) to r′. Such
an edge always exists since we assigned the value ∞
to the edge (r′, r). First notice that top(e) is assigned
exactly once – when we process edge e′. It therefore
only remains to show that top(e) is assigned correctly.
Recall that when a query about e returns top(e), then
the next query should be on the edge with greatest value
smaller than f(e) that is visible from top(e) in the entire
tree (viewing the tree as unrooted). Note that this edge
is also the edge with greatest value smaller than f(e)
that is visible from bottom(e′) in the subtree rooted at
bottom(e′) (viewing the tree as rooted). If such an edge
exists, we make it a child of e in (2b). If there is no such
edge, then obviously, when the query about e results
in top(e), then top(e) is the solution to the searching
problem. We handle this case in (2c). Therefore, top(e)
is assigned correctly and exactly once for each e in the
input tree. We have thus established the correctness.

To analyze the time complexity, notice that for
each edge e, the algorithm runs in time proportional
to the number of values in the visibility sequence of
bottom(e) that are screened by f(e). Since no value can
be screened twice, the total runtime is linear.

It should be noted that independently of this con-
tribution, Erik Demaine [6] gave a linear-time algorithm
for constructing a decision tree given just the strategy
function (we also need the visibility sequences), using
ideas from decremental connectivity in trees [1].

References

[1] S. Alstrup and M. Spork. Optimal on-line decremental
connectivity in trees. IPL, 64(4):161–164, 1997.

[2] Y. Ben-Asher, E. Farchi, and I. Newman. Opti-
mal search in trees. SIAM Journal on Computing,
28(6):2090–2102, 1999.

[3] R. Carmo, J. Donadelli, Y. Kohayakawa, and E. Laber.
Searching in random partially ordered sets. Theoretical

Computer Science, 321(1):41–57, 2004.
[4] M. Charikar, R. Fagin, V. Guruswami, J. Kleinberg,

P. Raghavan, and A. Sahai. Query strategies for
priced information. Journal of Computer and System

Sciences, 64(4):785–819, 2002.
[5] C. Daskalakis, R. M. Karp, E. Mossel, S. Riesen-

feld, and E. Verbin. Sorting and selection in posets.
arXiv:0707.1532, 2007.

[6] E. Demaine. Private communication, 2007.
[7] U. Faigle and G. Turán. Sorting and recognition prob-

lems for ordered sets. SIAM Journal on Computing,
17(1):100–113, 1988.

[8] D. E. Ferguson. Fibonaccian searching. Communica-

tions of the ACM, 3(12):648, 1960.
[9] W. J. Knight. Search in an ordered array having

variable probe cost. SIAM Journal on Computing,
17(6):1203–1214, 1988.

[10] D. E. Knuth. Sorting and Searching, volume 3 of
The Art of Computer Programming. Addison-Wesley,
Reading, Massachusetts, second edition, 1998.

[11] E. Laber and L. T. Nogueira. Fast searching in trees.
Electronic Notes in Discrete Mathematics, 7:1–4, 2001.

[12] N. Linial and M. Saks. Every poset has a central
element. Journal of combinatorial theory, A 40(2):195–
210, 1985.

[13] N. Linial and M. Saks. Searching ordered structures.
Journal of algorithms, 6(1):86–103, 1985.

[14] G. Navarro, R. Baeza-Yates, E. Barbosa, N. Ziviani,
and W. Cunto. Binary searching with non-uniform
costs and its application to text retrieval. Algorithmica,
27(2):145–169, 2000.

[15] K. Onak and P. Parys. Generalization of binary search:
Searching in trees and forest-like partial orders. In
FOCS, pages 379–388, 2006.

[16] W. W. Peterson. Addressing for random-access stor-
age. IBM Journal of Research and Development,
1(2):130–146, 1957.

