
Constant-Time Approximation Algorithms via Local Improvements

Huy N. Nguyen
MIT, CSAIL

huy2n@mit.edu

Krzysztof Onak∗

MIT, CSAIL
konak@mit.edu

Abstract

We present a technique for transforming classical ap-
proximation algorithms into constant-time algorithms
that approximate the size of the optimal solution. Our
technique is applicable to a certain subclass of algo-
rithms that compute a solution in a constant number of
phases. The technique is based on greedily considering
local improvements in random order.

The problems amenable to our technique include
Vertex Cover, Maximum Matching, Maximum Weight
Matching, Set Cover, and Minimum Dominating Set.
For example, for Maximum Matching, we give the first
constant-time algorithm that for the class of graphs of
degree bounded by d, computes the maximum matching
size to within εn, for any ε > 0, where n is the number
of nodes in the graph. The running time of the algorithm
is independent of n, and only depends on d and ε.

1. Introduction
There has been an enormous amount of work on

Maximum Matching, Vertex Cover, and Set Cover in
the classical computation model, where the whole in-
put is read. It is obviously not possible to compute a
solution to them in time sublinear in input size, since
an optimal solution may itself have linear size. Can
one approximate just the optimal solution size in time
sublinear in the input size? This and similar questions
have been asked by several researchers for various op-
timization problems [1, 2, 3, 9, 14]. In particular, Par-
nas and Ron [14] asked this question for the minimum
vertex cover problem. They discovered a connection to
distributed algorithms that run in a constant number of
rounds. For graphs of bounded maximum or average de-
gree, the connection yields approximation algorithms of
running time independent of the size of the graph. In this
paper, we show a general technique that can be used to

∗Supported in part by NSF grant 0514771.

construct constant-time approximation algorithms. The
technique works for all problems that were considered
by Parnas and Ron, but does not rely on distributed al-
gorithms, and for Maximum Matching, it can be used
to overcome limitations of the previously known dis-
tributed algorithms.

1.1. Simple Example: Maximal Matching

We begin with the example of approximating the size
of a maximal matching in a graph of maximum degree
at most d. We consider a run of our algorithm to be
successful if the returned value approximates the size of
some maximal matching.

Algorithm. All of our algorithms follow a general
framework of Parnas and Ron [14], which first shows
that the computational problem can be easily solved as-
suming oracle access to a solution, and then shows how
to implement the oracle.

In this case, letM be a fixed maximal matching. Sup-
pose that we have access to an oracle O that can answer
queries of the form “Does (u, v) belong to M?” for ev-
ery edge (u, v) of the graph. To find out if a node v
is matched in M , it suffices to query the oracle if any
of the edges incident to v is in M . It follows from the
Hoeffding bound that |M | can be estimated with con-
stant probability and additive error at most εn by check-
ing for O(1/ε2) randomly chosen vertices v, if they are
matched in M .

Our main contribution is a new way of implementing
oracles such the above for several problems. We now
present our implementation of O, for Maximal Match-
ing. A random number re ∈ [0, 1] is assigned to each
edge e of the graph1. In order to decide if an edge q is in
the matching, the oracle first determines the set of edges

1In an implementation, we do not assign all numbers re at the be-
ginning. We can postpone assignment of the random number re to
an edge e until we see it. After learning re, we keep it in case we
need it later again. Moreover, arbitrary random real numbers in [0, 1]
cannot be generated in practice. Nevertheless, it suffices to discretize

adjacent to q of numbers re smaller than that of q, and
recursively checks if any of them is in the matching. If
at least one of the adjacent edges is in the matching, q is
not in the matching; otherwise, it is.

Why does this work? Consider first the following
trivial greedy algorithm for finding a maximal match-
ing. The algorithm starts with an empty matching M .
For each edge e, it checks if there is already an adjacent
edge in M . If there is no such edge, it adds e to M .
The final M is clearly a maximal matching, since every
edge not in M is adjacent to at least one of the edges
in M . Our oracle simulates this algorithm, considering
edges in random order (which is generated by the ran-
dom numbers re).

Query Complexity. It remains to bound the query
complexity of the algorithm. Consider a chain of recur-
sive calls. Note that in each consecutive recursive call
the random number assigned to an edge decreases. In-
tuitively, on average it is divided by two. When it gets
below, say, 1/(10d), then, since each edge is adjacent to
at most 2d− 2 other edges, the probability that any edge
must be considered becomes smaller than 1/5. In this
case, few random calls will be done with high probabil-
ity.

Note that in our case, each query to the oracle is in-
dependent of the replies to the previous queries. Given
this property, we prove in Appendix A that the expected
number of queries to the graph that the oracle O makes
in order to handle a single query is at most 2O(d). This
implies that the expected query complexity of the whole
algorithm is at most O(d/ε2) · 2O(d) = 2O(d)/ε2.

Lemma 1 There is an algorithm of query complexity
2O(d)/ε2 that given query access to a graph on n ver-
tices of degree bounded by d, with probability at least
2/3 computes t̂ such that t ≤ t̂ ≤ t+ εn, where t is the
size of some maximal matching in the graph.

Immediate Corollary. Gavril (see [6]) proved that the
set of nodes matched in any maximal matching is a
proper vertex cover of size at most 2 times the opti-
mum. Furthermore, it is also well known that the size of
a maximal matching is at least one half of the maximum
matching size. We immediately obtain approximation
algorithms for two problems.

Corollary 2 There are approximation algorithms of
query complexity 2O(d)/ε2 for the minimum vertex cover

the range [0, 1] so that two edges are assigned the same number with
negligibly small probability.

size and the maximum matching size for graphs of max-
imum degree at most d that with probability 2/3 return t̂
such that t ≤ t̂ ≤ 2t+εn, where t is the minimum vertex
cover size or the maximum matching size, respectively.

1.2. Technique High-Level Description

We now give a high-level overview of our technique,
which we applied in a specific setting in Section 1.1. We
also briefly describe conditions that must be met in order
to make our technique applicable.

Transformation. Our technique transforms an algo-
rithm A that computes an approximate solution to a
problem into a constant-time algorithm that approxi-
mates the size of an optimal solution, provided A meets
certain criteria. We require that A compute the approx-
imate solution in a constant number of phases such that
each phase is an application of any maximal set of dis-
joint local improvements. (The local improvements con-
sidered in each phase may be different.) Moreover, to
achieve a constant running time, we require that each
local improvement considered in a given phase intersect
with at most a constant number of other considered local
improvements. For example, the maximal matching al-
gorithm of Section 1.1 constructs a maximal matching in
just one phase, by taking a maximal set of non-adjacent
edges.

The general idea behind the new constant-time algo-
rithm that we construct is the following. Let k be the
number of phases in the algorithm. For the i-th phase,
where 1 ≤ i ≤ k, we construct an oracle Oi that im-
plements query access to the intermediate solution con-
structed by the i-th phase of the algorithm. (O0 gives
the initial solution that the algorithm starts with.) Oi is
itself given query access to Oi−1, and simulates the i-th
phase of the algorithm on the output of the (i − 1)-st
phase. Finally, Ok provides query access to a solution
thatA could output. By using random queries toOk, we
approximate the size of the solution computed by A.

Locality Lemma. We show that for the problems that
we consider, the answer to a query about the output of
the i-th phase can be computed, using in most cases only
a small number of queries about the output of the (i −
1)-st phase. We show that long chains of dependencies
between prospective improvements in the i-th phase can
be avoided by considering them in random order. Hence,
it usually suffices to query a small neighborhood of each
query point. We state this key result, which we refer to
as “the Locality Lemma”, in Section 2.

The Locality Lemma applied to our sample problem
shows that with probability at least 2/3 the algorithm
returns a correct estimate and the number of queries is
bounded by 2O(d4)/ε4. This is worse than the more spe-
cialized upper bound 2O(d)/ε2 in Appendix A. The im-
proved upper bound takes advantage of the fact that the
algorithm consists of only one phase, and avoids depen-
dencies between queries to oracles on lower levels.

1.3. Approximation Notion

Before we quantitatively list our results, we define the
notion of approximation that we use. This notion com-
bines additive and multiplicative approximation, and ap-
pears in theoretical computer science in many contexts.

Definition 3 We say that a value ŷ is an (α, β)-
approximation to y, if

y ≤ ŷ ≤ α · y + β.

We say that an algorithm A is an (α, β)-approximation
algorithm for a value V (x) if it computes an (α, β)-
approximation to V (x) with probability at least 2/3 for
any proper input x.

In all problems considered by us, under very natural
assumptions, this notion suffices to get a multiplicative
approximation. For instance, we later show a (1, εn)-
approximation algorithm for the maximum matching
size for graphs of maximum degree at most d. If there
are Ω(n) edges in the graph, the maximum matching
size is at least Ω(n/d). Hence, by picking ε = Θ(ε′/d),
we can get a multiplicative (1+ε′)-approximation to the
maximum matching size.

1.4. Model

In the paper we only deal with two different kinds
of inputs. When the input is a graph, we assume query
access to the adjacency list of each node, i.e., for each
vertex v, we can ask which vertex is the i-th neighbor of
v. In the set cover problem, we are given a set of sets Si.
For each Si, we have access to a list of elements of Si,
and for each element, we have access to a list of sets it
is in.

1.5. Our Results and Previous Work

We now list our results, and compare them with pre-
vious work in related areas. We express the complexity
of our algorithms in terms of the necessary number of
queries, but the corresponding running time is indepen-
dent of the size of input and at most polynomial in the
query complexity.

Vertex Cover. We show that there exists a (2, εn)-
approximation algorithm of query complexity 2O(d)/ε2,
for graphs of maximum degree bounded by d. Com-
bining the results of Parnas and Ron [14] and Marko
and Ron [13] yields a (2, εn)-approximation algorithm
for the minimum vertex cover size of running time and
query complexity dO(log(d/ε)). Our algorithm has bet-
ter dependency on ε, but worse on d. Furthermore,
Trevisan showed that for any constant c ∈ [1, 2),
a (c, εn)-approximation algorithm must use at least
Ω(
√
n) queries (the result appeared in [14]).

Maximum Matching. The only results on approxima-
tion of the maximum matching size in sublinear time
that have been known before are the algorithms of Par-
nas and Ron [14]. Since their algorithms give a con-
stant factor approximation to the minimum vertex cover
size, they also give a constant factor approximation to
the maximum matching size. The main obstacle to ap-
plying the general reduction of Parnas and Ron from
distributed algorithms is that the known distributed al-
gorithms [4, 5] for maximum matching run in a number
of rounds that is polylogarithmic in the graph size, not
constant.

We show that nevertheless, there exists a (1, εn)-
approximation algorithm for graphs of maximum degree
bounded by d ≥ 2 with query complexity 2dO(1/ε)

.

Maximum Weight Matching. For bounded-degree
weighted graphs of all weights in [0, 1], one can
also show an algorithm that computes a (1, εn)-
approximation to the maximum weight matching with
a number of queries that only depends on d and ε. This
can be achieved by locally simulating an algorithm of
Pettie and Sanders [15]. We omit this result in this ver-
sion of the paper.

Set Cover. Let H(i) be the i-th harmonic number∑
1≤j≤i 1/j. Recall that H(i) ≤ 1 + ln i. We show

that there is an (H(s), εn)-approximation algorithm of

query complexity
(

2(st)4

ε

)O(2s)

for the minimum set
cover size, for instances with n sets Si, each of size
at most s, and with each element in at most t differ-
ent sets. As a special case of the set cover problem, we
get an (H(d+1), εn)-approximation algorithm of query

complexity
(

2d8

ε

)O(2d)

for the minimum dominating set
size for graphs of degree bounded by d.

Combining the results of Parnas and Ron [14] and
Kuhn, Moscibroda and Wattenhofer [11] yields an

(O(log d), εn)-approximation algorithm for the mini-
mum dominating set of query complexity dO(log d)/ε2.

Other Problems. Another example of a problem in
the same model is approximation of the minimum span-
ning tree weight for graphs of degree bounded by d.
Chazelle, Rubinfeld and Trevisan [2] showed that if
all edge weights are in {1, 2, . . . , w}, then there is
an algorithm that computes a multiplicative (1 + ε)-
approximation to the minimum weight spanning tree in
time O(dw

ε2 log w
ε).

1.6. Other Aspects

Connection to Property Testing. We consider the
class Cd of graphs of the maximum degree bounded by
d. In property testing of graphs in the bounded degree
model [7], one wants to distinguish two subsets of Cd:
graphs that have a property P and those that need to
have at least εdn edges added or removed to have P ,
where ε > 0 is a parameter.

Consider the property of having a perfect matching
(we focus on graphs with an even number of nodes).
Clearly, for a graph with a perfect matching, the max-
imum matching size is n/2. On the other hand, for any
graph that must have at least εdn edges added or re-
moved to have P , the maximum matching size is smaller
than n/2−Ω(εdn). Our maximum matching algorithm
can then be used to efficiently solve the testing problem
in constant time.

Separation between Vertex Cover and Maximum
Matching. Our result exhibits a separation between
approximation of the minimum vertex cover size and
approximation of the maximum matching size. In the
standard Turing machine computation model, the for-
mer is known to be NP-hard, and the latter is computable
in polynomial time. Note that this separation is condi-
tional, since it is based on the P 6= NP assumption, and
the two values are always within a factor of 2. Here,
in a natural computation model, we are able to prove
an unconditional separation. A result due to Trevisan
(see [14]) shows that approximation of the minimum
vertex cover size to within a factor less than 2 requires
Ω(
√
n) queries, and we show that the size of the max-

imum matching can be approximated arbitrarily well in
time independent of n.

Bounded Average-Degree Instances. Parnas and
Ron [14] observed that one can easily turn some algo-
rithms for bounded maximum-degree graphs into algo-
rithms for bounded average-degree graphs. Consider

the maximum matching problem. If the average de-
gree is at most d̂, then there are at most εn vertices
of degree greater than d̂/ε. Removing them from the
graph changes the maximum matching size by at most
εn. Therefore, running the algorithm for bounded max-
imum degree and ignoring all vertices of degree greater
than d̂/ε gives a (1, 2ε)-approximate solution.

Distributed Algorithms. Our technique can be used
to construct distributed algorithms that with constant
probability produce a good solution for graph problems
that we have considered. For instance, for the maxi-
mum matching problem, there is an algorithm that in
c = c(ε, d) communication rounds collects information
about all vertices and edges in the radius c, and random
numbers assigned to each prospective augmenting path.
For all but a constant fraction of edges, the knowledge
suffices to decide if they are in the matching or not. If
the radius-c neighborhood does not suffice to decide if
an edge is in the matching, we decide it is not. With high
probability, only a small fraction of edges that should be
in the matching is not included.

2. Locality Lemma

We now state and prove the Locality Lemma, which
is the main tool for bounding query complexity in this
paper. Let us first give its informal explanation. We are
given a graph of bounded degree with random numbers
r(v) in [0, 1] assigned independently to each node v of
the graph. A function f is defined inductively on the
nodes of the graph. The value of f at a node v is a func-
tion of only v and values of f at neighbors w of v such
that r(w) < r(v). The value of f at a node can be com-
puted recursively. Suppose that we have an algorithm
that does not know the numbers r(v), and only wants to
learn f at q different nodes. The lemma gives a bound
which holds with high probability on the total number
of nodes for which we must compute f in all recursive
calls. A single phase of each of our algorithms can be
expressed as this type of computation for a certain graph.

Lemma 4 (Locality Lemma) Let G = (V,E) be a
graph of degree bounded by d ≥ 2, and let g : V × (V ×
A)? → A be a function. A random number r(v) ∈ [0, 1]
is independently and uniformly assigned to each vertex
v of G. A function fr : V → A is defined recursively,
using g. For each vertex v, we have

fr(v) = g(v, {(w, fr(w)) : r(w) < r(v)}).

Let A be an algorithm that initially does not know
r, but can adaptively query fr at q different nodes. To

answer A’s queries, it suffices to recursively compute
fr(v) for at most

q2

δ
· Cd4

nodes v with probability at least 1 − δ, for any δ > 0,
where C is an absolute constant.

Proof Handling each query of A requires comput-
ing fr(v) for certain nodes v. Unfortunately, since A’s
queries may be adaptive, A may be able to deduce from
answers to previous queries how to query fr to increase
the number of nodes for which the function must be re-
cursively computed. Intuitively, if all A’s query points
were far away from each other, the sets of nodes ex-
plored to answer each query would likely be disjoint,
and we could bound the number of nodes explored for
each of them independently. Therefore, whenever we
bound the number of fr(v) computed for A’s query,
we also make sure that there is no node w close to the
query point such that computing fr(w) requires comput-
ing many fr(v).

We now give a few auxiliary definitions. We say that
a node v can be reached or is reachable from a node w
if there is a path u0 = w, u1, . . . , uk = v, such that
r(ui−1) > r(ui), for all 1 ≤ i ≤ k. Less formally,
v can be reached from w if we need to compute fr(v)
in order to compute fr(w). The reachability radius of
node v is the maximum distance between v and a node
that is reachable from v.

What is the probability that for a given node v, the
reachability radius is greater than t? The probability
can be bounded by the probability that there is a path of
length t + 1 that starts at v, and the values r are strictly
decreasing along the path. There are at most d · (d− 1)t

such paths, and by symmetry, the probability that the
values r decrease along a fixed such path is 1/(t + 2)!
Hence the probability of the event is at most d(d−1)t

(t+2)! .
We now consider not just a single query, but all the

(potentially adaptive) queries constructed byA. What is
the probability that for each query fr(w), the reachabil-
ity radius of w is at most t? After each query, A learns
something about r, and may use this knowledge to cre-
ate a malicious query. Note that it cannot learn more
than r(v) for nodes v that are either reachable from w or
are a neighbor of a node reachable from w, where one of
the queries was about fr(w). Suppose that the reacha-
bility radius for all previous query points was at most t.
Let v be a vertex at distance greater than 2(t + 1) from
each of the previous query points. The probability that
the reachability radius of v is at most t depends only on
r(u), for u at distance at most t+ 1 from v, and hence is

independent of the algorithm’s current knowledge. We
only need to make sure that for a query about f(v), for
v at distance at most 2(t + 1) to one of the previous
query points, v has small reachability radius. This may
depend on the knowledge of the algorithm. Hence, for
any query point v, we also bound the reachability radius
for all vertices at distance at most 2(t + 1), so that the
algorithm is unlikely to construct a query that requires
exploring many vertices.

For each query point v, there are at most

1 + d

2t+1∑
i=0

(d− 1)i ≤ 1 + d

2t+1∑
i=0

di ≤ d2t+3

vertices at distance at most 2(t + 1). The total number
of nodes close to one of the q query points is hence at
most q ·d2t+3. We want to bound the reachability radius
by t for all of them. By the union bound, the probabil-
ity that the algorithm queries some fr(v), where v has
reachability radius greater than t is at most

qd2t+3 · d(d− 1)t

(t+ 2)!
≤ q · d3t+4

(t+ 2)!
≤ q ·

(
3d3

t+ 2

)t+2

.

Let Ei be the event that the maximum reachability
radius for all query points is exactly i, and E>i the
event that it is greater than i. We have, Pr[E>i] ≤

q ·
(

3d3

i+2

)i+2

.
What is the expected total number T of vertices for

which we recursively compute fr? It is

T ≤
∑
i≥0

Pr[Ei] · q(1 + d ·
∑

0≤j≤i−1

(d− 1)j)

≤
∑
i≥0

Pr[Ei] · qdi+1 ≤
∑
i≥0

Pr[E>i−1] · qdi+1

≤
∑
i≥0

q

(
3d3

i+ 1

)i+1

· qdi+1 ≤ q2
∑
i≥0

(
3d4

i+ 1

)i+1

.

For i ≥ 6d4 − 1, we have

∑
i≥6d4−1

(
3d4

i+ 1

)i+1

≤
∑

i≥6d4−1

2−(i+1) ≤ 1.

Using calculus, one can show that the term
(

3d4

i+1

)i+1

is

maximized for i+ 1 = 3d4

e , and hence,

∑
i<6d4−1

(
3d4

i+ 1

)i+1

≤ (6d4 − 1) · e 3d4
e .

We get

T ≤ q2
(

1 + (6d4 − 1) · e 3d4
e

)
≤ q2 · 6d4 · e 3d4

e ≤ q2Cd4
,

for some constantC. By Markov’s inequality, the proba-
bility that the number of queries is greater than T/δ is at
most δ. Hence with probability at least 1−δ, the number
of queries is bounded by q2Cd4

/δ. �

3. Maximum Matching
3.1. Definitions and Notation

LetM be a matching in a graphG = (V,E), that is, a
subset of nonadjacent edges of G. A node v is M -free if
v is not an endpoint of an edge inM . A path P is anM -
alternating path if it consists of edges drawn alternately
fromM and fromE\M . A path P is anM -augmenting
path if P is M -alternating and both endpoints of P are
M -free nodes (i.e., |P ∩M | = |P ∩ (E \M)|+ 1).

3.2. Properties of Matchings

Let ⊕ denote the symmetric difference of sets. If
M is a matching and P is an M -augmenting path, then
M ⊕ P is a matching such that |M ⊕ P | = |M | + 1.
Many matching algorithms search for augmenting paths
until they construct a maximum matching, and one can
show that in an non-maximum matching there is an aug-
menting path.

The correctness of our algorithm relies on the prop-
erties of matchings proven by Hopcroft and Karp [8].
The part of their contribution that is important to us is
summarized below.

Fact 5 (Hopcroft and Karp [8]) Let M be a matching
with no augmenting paths of length smaller than t. Let
P ? be a maximal set of vertex-disjoint M -augmenting
paths of length t. Let A be the set of all edges in
the paths in P ?. There does not exist an (M ⊕ A)-
augmenting path of length smaller than or equal to t.

We now prove an auxiliary lemma that connects the
minimum length of an augmenting path and the quality
of the matching.

Lemma 6 Let M be a matching that has no augment-
ing paths of length smaller than 2t + 1. Let M? be a
maximum matching in the same graph. It holds |M | ≥

t
t+1 |M

?|.

Proof Consider the set of edges ∆ = M ⊕M?. There
are exactly |M?| − |M | more edges from M? then from
M in ∆. Since M and M? are matchings, each vertex
is incident to at most two edges in ∆. Hence ∆ can be
decomposed into paths and cycles. Each path of even
length and each cycle contain the same number of edges
from M and M?. Each path P of odd length contains
one more edge from M? than from M . It if contained
one more edge from M , it would be an M?-augmenting
path; an impossibility. P is then anM -augmenting path.
Summarizing, we have exactly |M?| − |M | odd-length
vertex-disjoint paths in ∆, and each of them is an M -
augmenting path.

Since each M -augmenting path has length at least
2t − 1, this implies that |M | ≥ t(|M?| − |M |). Hence,
|M | ≥ t

t+1 |M
?|. �

3.3. The Algorithm

Consider the maximum matching problem in an un-
weighted graph of bounded degree d. It is well known
that the size of any maximal matching is at least half of
the maximum matching size. Because of that, we ob-
tained a (2, εn)-approximation algorithm for the maxi-
mum matching size in Corollary 2. We now show that
our technique can be used to achieve better approxima-
tions in constant time.

A Sequential Algorithm. We simulate the follow-
ing sequential algorithm. The algorithm starts with an
empty matching M0. In the i-th phase, it constructs
a matching Mi from Mi−1 as follows. Let P ?

i−1 be a
maximal set of vertex-disjoint Mi−1-augmenting paths
of length 2i − 1. Let Ai−1 be the set of all edges in the
augmenting paths in P ?

i−1. We set Mi = Mi−1 ⊕Ai−1.
IfMi−1 is a matching, so isMi. By induction, allMi are
matchings. The algorithm stops for some k, and returns
Mk.

We now show that Mi has no augmenting path of
length smaller than 2i + 1. M1 is a maximal match-
ing, so it has no augmenting path of length smaller than
3. Now, for the inductive step, assume that Mi−1, i ≥ 1,
has no augmenting path shorter than 2i − 1. P ?

i−1 is a
maximal set of vertex-disjoint Mi−1-augmenting paths
of length 2i− 1. Therefore, it follows by Fact 5 that Mi

does not have any augmenting path shorter than 2i+ 1.
Set k = d1/δe, and let M? be a maximum matching.

By Lemma 6, k
k+1 |M

?| ≤ |Mk| ≤ |M?|, which yields
|M?| ≤ k+1

k |Mk| ≤ (1+δ)|M?|. If we had an estimate
α such that 2|Mk| ≤ α ≤ 2|Mk|+ εn/2, we could get a
(1 + δ, εn)-approximation to |M?| by multiplying α by
k+1
2k , which is at most 1.

The Constant-Time Algorithm. We construct a se-
quence of oracles O1, O2, . . . , Ok. A query to Oi is
an edge e ∈ E. The oracle’s reply indicates whether e
is in Mi. To compute the required α, it suffices to es-
timate the fraction of vertices that are matched in |Mk|.
In order to do so, one can sample O(1/ε2) vertices, and
for each of them, check if any incident edge is in Mk

or not. The correctness of the estimate with probability
5/6 follows from the Hoeffding bound.

The oracles Oi are constructed by using our tech-
nique for transforming algorithms into constant-time al-
gorithms. Oi has access to Oi−1, and simulates the i-
th phase of the above algorithm. We assume that each
Mi−1-augmenting path P of length 2i− 1 is assigned a
random number r(P), which is uniformly and indepen-
dently chosen from [0, 1]. These random numbers give
a random ordering of all the Mi−1-augmenting paths.
P ?

i−1 is the greedily constructed maximal set of vertex-
disjoint Mi−1-augmenting paths P considered in order
of their r(P). To handle a query about an edge e, the or-
acle first finds out if e ∈Mi−1, and then, checks if there
is an Mi−1-augmenting path in P ?

i−1 that contains e. If
there is such a path, the answer of Oi to the query about
e is the opposite of the answer of Oi−1. Otherwise, it
remains the same.

The oracle can easily learn all length-(2i− 1) Mi−1-
augmenting paths that contain e by querying G and
Oi−1. To find out which augmenting paths are in P ?

i−1,
the oracle considers the following graph Hi. All the
Mi−1-augmenting paths of length 2i − 1 are nodes of
Hi. Two nodes P1 and P2 are connected in Hi if P1 and
P2 share a vertex. To check if P is in P ?

i−1, it suffices
to check if any of the paths R corresponding to the ver-
tices adjacent to P in Hi is in P ?

i−1, for r(R) < r(P).
If none, P ∈ P ?

i−1. Otherwise, P is not in P ?
i−1. This

procedure can be run recursively. This finishes the de-
scription of the algorithm.

Query Complexity. It remains to bound the number
of queries of the entire algorithm to the graph. This is
accomplished in the following lemma.

Lemma 7 The number of queries of the algorithm is

with probability 5/6 of order 2O(d9k)

ε2k+1 , where k = d1/δe,
and d ≥ 2 is a bound on the maximum degree of the
input graph.

Proof Our main algorithm queries Ok about edges ad-
jacent to C ′/ε2 random vertices, where C ′ is a constant.
LetQk+1 = C ′ ·d/ε2 be the number of the direct queries
of the main algorithm to G. These queries are necessary
to learn the edges that Ok is queried with. Let Qi+1 be

an upper bound on the number of queries of the algo-
rithm to Oi. We now show an upper bound Qi on the
number of queries to G performed by Oi. The upper
bound holds with probability at least 1 − 1

6k . Qi also
bounds the number of queries to Oi−1, since Oi does
not query any edge it has not learnt about from G. For
each received query about an edge e, Oi first learns all
edges within the distance of 2i − 1 from e, and checks
which of them are in Mi−1. For a single e, this can be
done with at most d ·2

∑2i−2
j=0 (d−1)j ≤ 2d2i queries to

both G andOi−1, and suffices to find all length-(2i− 1)
Mi−1-augmenting paths that contain e.

There are at most id2i−1 length-(2i − 1) paths in G
that contain a fixed vertex v. Each such path can be
broken into two paths that start at v. The length of the
shorter is between 0 and i − 1, and there are at most dt

paths of length t that start at t.
The number of length-(2i − 1) Mi−1-augmenting

paths that contain e is therefore at most id2i−1. More-
over, the maximum degree of Hi can be bounded by the
number of length-(2i − 1) paths that intersect a given
length-(2i − 1) augmenting path. Hence, the degree of
Hi is at most 2i · id2i−1 = 2i2d2i−1. Finally, to find
augmenting paths adjacent in Hi to a given augment-
ing path P , it suffices to learn whether e′ is in Mi−1,
for each edge e′ within the radius of 2i from any of the
vertices of P . This can be accomplished with at most
2i · d

∑2i−1
j=0 dj ≤ 2id2i+1 queries to both G and Oi−1.

In total, to answer queries about all, at most Qi+1

edges e, Oi must check membership in P ?
i−1 for at

most Qi+1 · 2id2i−1 augmenting paths. By the Local-
ity Lemma, the number of augmenting paths for which
we recursively check membership in P ?

i−1 is with prob-
ability 1− 1

6k at most

(Qi+1 · id2i−1)2 · C(2i2d2i−1)4

· 6k ≤ 2O(d8i) · kQ2
i+1.

For each of them we compute all adjacent paths in Hi.
Therefore, with probability 1 − 1

6k , the total number of
Oi’s queries to both Oi−1 and G is bounded by

Qi+1 · 2d2i + 2O(d8i) · kQ2
i+1 · 2id2i+1

≤ 2O(d8i) · kQ2
i+1 =: Qi.

The total number of queries to G in the entire algo-
rithm can be bounded by

k+1∑
j=1

Qj ≤ 2Q1 ≤
(
C ′ · d · k

ε2

)2k

· 2O(d8k)·2k

≤ 2O(d9k)

ε2k+1 . �

We summarize the whole algorithm in the following the-
orem.

Theorem 8 There is a (1 + δ, εn)-approximation algo-

rithm for the maximum matching size that uses 2O(d9k)

ε2k+1

queries, where d ≥ 2 is a bound on the maximum de-
gree, and k = d1/δe.

Proof We run the algorithm described above. If the
algorithm exceeds the number of queries guaranteed in
Lemma 7, we terminate it, and return an arbitrary result.
The algorithm returns a (1 + δ, εn)-approximation with
probability at least 2/3, because the sampling can re-
turn a wrong estimate with probability at most 1/6, and
the algorithm can exceed the allowed number of queries
with probability at most 1/6. �

Finally, we can easily remove the multiplicative factor.

Corollary 9 There is a (1, εn)-approximation algo-
rithm of query complexity 2dO(1/ε)

for the maximum
matching size, where d ≥ 2 is a bound on the maximum
degree.

Proof Using the algorithm of Theorem 8, we can get
a (1 + ε, εn/2)-approximation for the maximum match-
ing size, using 2dO(1/ε)

queries. Since the size of the
maximum matching is at most n/2, this approximation
is also a (1, εn)-approximation for the maximum match-
ing size. �

4. Set Cover

In the minimum set cover problem, an input consists
of subsets S1 to Sn of U = {1, . . . ,m}. Each element
of U belongs to at least one of the sets Si. The goal is to
cover U with the minimum number of sets Si, that is, to
find a minimum size set I of indices such that

⋃
i∈I Si =

U . In this paper, we want to approximate the optimal
size of I .

We assume that for each set Si, we have query access
to a list of elements of Si, and that for each element
u ∈ U , we have query access to a list of indices of sets
Si that contain u.

4.1. The Classical Greedy Algorithm

Theorem 10 There is an (H(s), εn)-approximation al-

gorithm of query complexity
(

2(st)4

ε

)O(2s)

for the mini-
mum set cover size for instances with all n sets Si of size
at most s, and each element in at most t different sets.

Proof We simulate the classical greedy algorithm
[10, 12] for the set cover problem. The algorithm starts
from an empty cover, and keeps adding the set Si which
covers most elements that have not yet been covered, un-
til the whole set U is covered. The approximation factor
of the algorithm is at most H(s) ≤ 1 + ln s.

We first consider all sets in random order and add to
the cover those that cover s new elements at the time
they are considered. Let C1 be the set of sets that were
already included into the cover. We then consider the
remaining sets, also in random order, and we add to the
cover those that cover s− 1 new elements. This way we
get C2, the set of all sets already included in the cover.
We keep doing this until we cover the whole set U , and
Cs is the final cover. We show that in most cases one
can check if a set is in the cover without simulating the
whole process.

We create a sequence of oracles O1, O2, . . . , Os that
correspond to the process described above. A query to
an oracle Oj is an index i of a set Si. The oracle’s reply
indicates whether Si is in Cj .

How is Oj implemented? We assume that each set
Si is assigned a random number rji, which is uniformly
and independently chosen from [0, 1]. These random
numbers give a random ordering of sets Si. To handle
a query about a set Sk, we first ask Oj−1 if Sk was al-
ready included in Cj−1. (For j = 1, we assume that
Cj−1 = C0 = ∅, so no query is necessary in this case.) If
Sk was already in Cj−1, then it is also in Cj . Otherwise,
we learn first the elements of Sk (at most s queries) and
what sets Si they belong to (at most st further queries).
Then, we check for each of these Si if it was already in
Cj−1 (at most st queries toOj−1), and for all of the Si’s
that have rji < rjk, we recursively check if they are in
Cj . Finally, using this knowledge, we can verify what
number of elements of Sk is not yet covered, when Sk is
considered. If the number of these elements is s− j+ 1,
then Sk is in Cj . Otherwise, the number of the elements
is lower than s− j + 1, and Sk is not in Cj .

It is obvious that the above procedure simulates the
classical greedy algorithm. Our sublinear approximation
algorithm queries Os for C ′/ε2 sets chosen at random,
where C ′ is a sufficiently large constant, to estimate the
fraction of sets which are in the cover to within εn/2
with probability 5/6. By adding εn/2 to the estimate,
we get the desired approximation. We want to bound the
number of queries. We set Qs to (C ′/ε2)2 · 6s · C(st)4 ,
and define Qj , for 1 ≤ j ≤ s − 1, to be Qj ≤ (Qj+1 ·
(st + 1))2 · 6s · C(st)4 . By Lemma 4, each Qi bounds
the number of sets for which we check if they are in Ci
with probability 1−s · 1

6s = 1− 1
6 = 5

6 . It can be shown

by induction that

Qs−i =

(
6s · (st+ 1) · C(st)4

ε

)O(2i)

=

(
2(st)4

ε

)O(2i)

with probability at least 5/6. So with probability 5/6,
the total number of queries is at most

(s+ st) ·
s∑

i=1

Qs =

(
2(st)4

ε

)O(2s)

.

Summarizing, with probability 2/3, the algorithm uses
the above number of queries, and returns the desired ap-
proximation. �

4.2. Application to Dominating Set

In the dominating set problem, one is given a graph,
and chooses a minimum size subset S of its vertices such
that each vertex v of the graph is either in S or is adjacent
to a vertex in S.

Theorem 11 There is an (H(d+1), εn)-approximation

algorithm of query complexity
(

2d8

ε

)O(2d)

, for the min-
imum dominating set size for graphs with the maximum
degree bounded by d.

Proof The problem can be trivially expressed as an
instance of the set cover problem. For each vertex v,
we have a set Sv of size at most d + 1 that consists of
v and all neighbors of v. We want to cover the set of
vertices of the graph with the minimum number of sets
Sv . To approximate the minimum set cover size, we use
the algorithm of Theorem 10. �

4.3. Query Lower Bound Discussion

Trevisan proved that for every two positive constants
γ and ε, there exists a constant d such that obtaining
with constant probability a (2 − γ, εn)-approximation
of the size of a minimum vertex cover of graphs over
n vertices and degree d, requires Ω(

√
n) queries [14].

Note that vertex cover is a special case of set cover, in
which we want to cover the set of edges of the graph. For
each vertex v, we create a set Sv that consists of edges
incident to v. This implies that the above lower bound
also applies to set cover, and shows that it is impossible
to get a constant approximation factor less than 2 with
the number of queries independent of the input size.

5. Future Research

It is interesting to understand what other approxima-
tion problems our technique applies to. We also believe
that the locality lemma can be improved.

Moreover, it is likely that our analysis of the maxi-
mal matching algorithm is suboptimal. In particular, if
we consider edges adjacent to a given edge in order of
their random numbers, then after we learn that a single
edge is in the maximal matching, we do not have to con-
sider edges adjacent to this edge, as they cannot be in
the matching. Our experiments indicate that the number
of queries may grow quasi-polynomially, not exponen-
tially, in d. If this is in fact the case, our algorithm may
actually outperform the algorithm that follows from the
results of Marko and Ron, and Parnas and Ron [13, 14]
in all parameters.

Acknowledgement

The authors thank Ronitt Rubinfeld for her invaluable
help in improving the presentation of the paper.

References

[1] M. Badoiu, A. Czumaj, P. Indyk, and C. Sohler. Facility
location in sublinear time. In ICALP, pages 866–877,
2005.

[2] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approxi-
mating the minimum spanning tree weight in sublinear
time. In ICALP, pages 190–200, 2001.

[3] A. Czumaj and C. Sohler. Estimating the weight of met-
ric minimum spanning trees in sublinear-time. In STOC,
pages 175–183, 2004.

[4] A. Czygrinow and M. Hańćkowiak. Distributed algo-
rithm for better approximation of the maximum match-
ing. In COCOON, pages 242–251, 2003.

[5] A. Czygrinow, M. Hańćkowiak, and E. Szymańska. A
fast distributed algorithm for approximating the maxi-
mum matching. In ESA, pages 252–263, 2004.

[6] M. R. Garey and D. S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, 1979.

[7] O. Goldreich and D. Ron. Property testing in bounded
degree graphs. Algorithmica, 32(2):302–343, 2002.

[8] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for
maximum matchings in bipartite graphs. SIAM Journal
on Computing, 2(4):225–231, 1973.

[9] P. Indyk. Sublinear time algorithms for metric space
problems. In STOC, pages 428–434, 1999.

[10] D. S. Johnson. Approximation algorithms for combi-
natorial problems. J. Comput. Syst. Sci., 9(3):256–278,
1974.

[11] F. Kuhn, T. Moscibroda, and R. Wattenhofer. The price
of being near-sighted. In SODA ’06: Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete
algorithm, pages 980–989, New York, NY, USA, 2006.
ACM.

[12] L. Lovász. On the ratio of optimal integral and fractional
covers. Discrete Mathematics, 13:383–390, 1975.

[13] S. Marko and D. Ron. Distance approximation in
bounded-degree and general sparse graphs. In APPROX-
RANDOM, pages 475–486, 2006.

[14] M. Parnas and D. Ron. Approximating the minimum
vertex cover in sublinear time and a connection to dis-
tributed algorithms. Theoretical Computer Science,
381(1-3):183–196, 2007.

[15] S. Pettie and P. Sanders. A simpler linear time 2/3-
epsilon approximation for maximum weight matching.
Inf. Process. Lett., 91(6):271–276, 2004.

A. Improved Query Complexity Analysis
for Maximal Matching Size

Lemma 12 Let G be a graph such that each vertex is
adjacent to at most d other vertices. For each vertex v,
we independently select a random number r(v) from the
range [0, 1]. The expected query complexity of an algo-
rithm that starts from a vertex u chosen independently of
the values r(v), and explores all paths w0 = u, w1, . . . ,
wk such that r(w0) > r(w1) > . . . > r(wk) is 2O(d).

Proof Let Q(x) be the maximum expected number of
queries for any vertex v, if r(v) = x. Obviously, if x ≤
y, then Q(x) ≤ Q(y). Let q1, q2, . . . , qk be neighbors
of v, where k ≤ d. For each i, yi = r(qi) is a random
variable. We claim that

Q(x) ≤ d+
k∑

i=1

Pr[yi < x] · E [Q(yi) |yi < x] .

We first read the entire neighborhood of v with at most
d queries. Then, for each neighbor qi with yi < r, we
explore paths that start from qi with the expected number
of queries bounded by Q(yi).

In particular, for any i ∈ {1, . . . , 2d}, we have

Q

(
i

2d

)
≤ d+

d∑
j=1

E

[
Q(yj)

∣∣∣∣yj <
i

2d

]
·Pr
[
yj <

i

2d

]

≤ d+
d∑

j=1

i∑
k=1

E

[
Q(yj)

∣∣∣∣yj ∈
[
k − 1

2d
,
k

2d

)]

·Pr
[
yj ∈

[
k − 1

2d
,
k

2d

)]

≤ d+
d∑

j=1

i∑
k=1

Q

(
k

2d

)
· 1

2d
≤ d+

1
2

i∑
k=1

Q

(
k

2d

)
.

Hence,

Q

(
i

2d

)
≤ 2d+

i−1∑
k=1

Q

(
k

2d

)
.

It can be shown by induction that

Q

(
i

2d

)
≤ 2d

(
2i − 1

)
.

It holds

Q

(
1
2d

)
≤ 2d ≤ 2d

(
21 − 1

)
,

and for i ≥ 2,

Q

(
i

2d

)
≤ 2d+

i−1∑
k=1

Q

(
k

2d

)

≤ 2d

(
1 +

i−1∑
k=1

2k − 1

)
≤ 2d

(
2i − i+ 1

)
≤ 2d

(
2i − 1

)
.

Finally, we get

Q(r(u)) ≤ Q(1) ≤ 2d
(
22d − 1

)
= O

(
2O(d)

)
. �

Corollary 13 The query complexity of the algorithm
presented in Section 1.1 is 2O(d)/ε2.

Proof We generate in advance O(1/ε2) nodes to sat-
isfy the Hoeffding bound. For all at mostO(d/ε2) edges
incident to them, we query oracle O if they are in the
maximal matching or not. By linearity of expectation,
the total expected number of queries equals the expecta-
tion of one of them times their number. Look at the dual
graphG′ ofG. Each vertex ofG′ corresponds to an edge
in G, and two vertices in G′ are connected if and only
if the corresponding edges in G are adjacent. Note that
the maximum vertex degree in G′ is at most 2d− 2. By
Lemma 12, the oracle needs on average at most 2O(d)

queries to G′ to compute an answer to a single query
about a membership of an edge e in M . A single query
to G′ can easily be simulated with O(d) queries to G.
Hence, the total expected query complexity of the algo-
rithm is

O

(
d

ε2

)
· 2O(d) ·O(d) =

2O(d)

ε2
.

�

