Lectures 6: Graph Connectivity Sketching

DS-563/CD-543 @ Boston University
Instructor: Krzysztof Onak

Fall 2021

1 Problem

Input: a stream describing a graph G on V' = [n]
Question: Is G connected?
We’ll consider two versions of the problem: insertion only (the input stream is a sequence of edges that

are never deleted) and insertion—deletion (the input stream is a sequence of updates of the form “insert
(u,v)” and “delete (u,v)” with no edge deleted before it is inserted).

2 Insertion—only streams

We keep a subset F' of edges that is a spanning forest of the graph we have seen so far. Initially, /' = (). For
every edge (u, v) that we see, if u and v are already connected by F, we do nothing. Otherwise, we add this
edge to F'. At the end of the stream, G is connected if and only if all vertices are connected by F'.

Space usage: O(n) words of space, because I’ consists of at most n — 1 edges.

3 Insertion—deletions streams

3.1 First attempts

» Sample edges and see what has not been deleted: the graph might become very dense and then have
lots of deletions, so this won’t work.

 Is a graph that is very sparse at the end of the stream the worst case then? Not really. In the last lecture
we mentioned and used sparse recovery. If the final graph has k edges, it can be fully recovered, using
O(k polylog(n)) words of space.

3.2 Encoding of the graph

We encode adjacency lists of every vertex as a vector of length (g) Every entry corresponds to a single pair
of vertices in V' = [n] and is indexed by (unordered) pairs {j, '}, where j, 7/ € V and are different. For a
given vertex i € V, we create a vector x;, such that (z;)y; i1, the entry indexed by {j, j'}, is non-zero if and
only if i € {j,7'} and {4, j'} is present in the graph. In other words, the entry corresponding to a specific



edge is non-zero if this edge is incident on ¢ and present in the graph. If this entry is non-zero, it is either
—1or 1. More specifically, (z;){; ;1 = —1if j <iand (z;)5 = Lif j > 4.

Example:
1 {1,2p {1,3t {1,4} {2,3} {24} {3,4}
r; = ( 1 1 0 0 0 0 )
xa = -1 0 0 1 0 0 )
3 2 x3 = 0 -1 0 -1 0 1 )
4 g = 0 0 0 0 0 -1 )

Note that most entries are 0. If a specific edge is not present in the graph, all entries in the column
corresponding to this edge are zero. Otherwise, only two of them are non-zero, i.e., those corresponding to
the endpoints of the edge. Moreover, one of them is —1 and the other one is 1.

The last property has very useful consequences. Namely, these vectors can be combined to represent the
connectivity of a subset of vertices. In the rest of this note, we write xg for any subset S of the vertices to
denote ) ;g T;.

Claim: For any subset S of vertices and any pair {j, j'} of vertices, the entry corresponding to {7, j'} in xg
is non-zero if and only if {7, j'} is present in the graph and connects S with V' \ S.

Proof sketch: Let e = {7, j'}. First, if e is not present in the graph, the entries corresponding to e are 0 in all
vectors x;, and hence the corresponding entry in zg is 0 as well, as desired. It remains to show that the claim
holds if e is present in the graph. Consider three cases. If e connects a vertex in S to a vertex not in S, then
exactly one of the non-zero entries corresponding to e is included in the summation and the corresponding
entry in xg is non-zero as well, which is what what we hoped for. Otherwise, if e connects vertices in V' \ S,
no non-zero entry corresponding to e ends up in the summation, and the corresponding entry in xg is zero,
as desired. Finally, if both endpoints of e belong to S, the only non-zero entries corresponding to e are
included in the summation and they cancel each other out, which finishes the proof. O

3.3 Boruvka’s algorithm

We build on ideas from Boriivka’s algorithm. In particular, consider the following parallel algorithm for
connectivity:

Algorithm 1: Algorithm for discovering connected components

1 foreach vertex v do
2 L create a component of size 1 that contains only v

3 repeat
4 foreach component C' do
5 L select an arbitrary edge connecting C' to the rest of the graph (if there is such an edge)

6 merge components that are connected via selected edges

Claim: Before the i-th iteration of the loop, each component is either a maximal connected component or
its size is at least 201,

Proof sketch: Before we start the first iteration, the size of each component is 1 = 2° and therefore each
component is trivially connected in the underlying graph. Suppose now that the claim holds before iteration



1. Consider a component C' that exists after the iteration. If it exists before the iteration and does not
change during it, then C' has no edges connecting it to any vertex outside of C' and is already a maximal
connected component. If C' is a new component after iteration i, it is a result of merging two or more
components that existed before the iteration. Each of them is connected in the underlying graph and since
they are connected with graph edges, their union is connected as well. Moreover, since they are not maximal
connected components, the size of each of them is at least 2'~! and the size of their union has to be at least
twice as much, i.e., 2 - 271 = 27, O

Corollary: The algorithm can be stopped after [logn] iterations of the loop, since the components will
not change after that. Components constructed by the algorithm will at this point be exactly the connected
components of the graph.

34 /(y—sampling

We use the following tool that allows for extracting a non-zero coordinate of a vector.

There is a linear sketching algorithm that takes a vector in {—n,...,n}" and turns it into
polylog(n) bits. For any v in the allowed range, the algorithm can correctly report a non-zero
coordinate of v if v is non-zero—or report that v is an all-zero vector—with probability at least
1—n3.

These types of algorithms are usually constructed so they do not only report a non-zero coordinate, but they
report a uniformly random non-zero coordinate, which may be important in some applications. This is why
we refer to this algorithm as ¢y-sampling.

We won’t show how to construct it here, but it’s possible to do this, using ideas from our algorithm for
approximately counting the number of distinct elements.

3.5 Putting it all together

In order to find out whether our graph is connected, we will simulate Bortivka’s algorithm. For each iteration
of Bortivka’s algorithm—and recall we need only O(log n) of them—we run an independent instance of the
{p—sampling algorithm and apply it to all vectors x;. Overall, this requires O(logn) - n - polylog(n) =
O(npolylog(n)) space.

Let us now describe how we use these sketches. In the first iteration, we start with a separate component
for each vertex. We have sketches for each x;, 1 < i < n, provided by the first /o—sampling algorithm. We
apply this {p—sampling algorithm to discover one edge connecting each single—vertex component to the rest
of the graph. We then use these edges to merge components. What is the probability that we fail to correctly
discover an edge for any of the components? By the union bound, it is at most 1 — n - n% =1- #

To simulate the second, or any later, iteration, we need to discover edges connecting each of the com-
ponents to the rest of the graph (if there are such edges). We use the fact that the £y—sampling algorithm is
a linear sketching algorithm. For a given component C', the sketch for z¢ is the sum of sketches for each
1 € C, which we already have. Once we compute the sketch for x¢ for each component C', we apply the £,
sampling procedure to each of them to discover an edge connecting C' with the rest of the graph if there is
such an edge. Then we can merge components that are connected. The probability that the ¢y procedure fails
to correctly identify edges connecting any of the components C' with the rest of the graph—or to correctly
detect that C' has no such connections—is at most 1 — (number of components) - % >1-— 7712



We repeat this approach over all iterations of our simulation of Borlivka’s algorithm. Overall, the prob-
ability that any query to any instance of the {y—sampling algorithm fails is at most (1 — n_2)“°g nl <
1—[logn] - # <1- % Note that we need O(log n) copies of the £p—sampling algorithm, because each of
them guarantees it works properly only for non-adaptive queries, and we have O(logn) rounds/iterations,
each consisting of a set of non-adaptive queries about all current components.

3.6 Additional application: distributed setting

Note that this algorithm can applied in the following communication setting. Suppose that there are n
players, each knowing the adjacency list of a single vertex. Perhaps it’s the local connectivity of this player.
Then each of them can send a polylog(n)-bit message to a single player, who can then find out whether all
the players are connected. The only requirement is that all the players have shared randomness needed to
initialize the instances of the fp—sampling algorithm.

It is interesting that for connectivity, the entire graph can be reduced to O(n polylog(n)) information,
and in particular, the adjacency list of each neighborhood of size n — 1, can be reduced to O(polylog(n))
bits, independently of other neighborhoods.

4 Extensions
This approach can be extended to the following problems:
* reconstructing a minimum spanning tree

* k-connectivity



