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Union Bound

For any probabilistic events E1, . . . , Ek,

Pr(at least one of events E1, . . . , Ek has occured) ≤
k∑
i=1

Pr(Ei),

where Pr(Ei) denotes the probability of event Ei.

In this class, we routinely use the union bound to show that we can avoid a set of
bad events with good probability. For instance, consider bad events E1, E2, and E3
that can break our algorithm and occur with probability at most δ/4, δ/5, and δ/2,
respectively. Then the union bound allows us to say that our algorithm works correctly
with probability at least 1− (δ/4 + δ/5 + δ/2) ≥ 1− δ.

Markov’s Inequality

Let X be a non-negative random variable with E[X] <∞. For any a > 0,

Pr(X ≥ a) ≤ E[X]

a
.

Suppose that a generous stranger leaves an envelope with money in your mailbox every
day. If on average there is $100 in the envelope, how often is there at least $200?
Clearly, you cannot find this much in the envelope every day, because then the average
would be at least $200. Can you find this much 51% of the days? Again, the answer
is no, because that would imply that the average would be at least 51

100 · $200 = 102,
even if you assume that you get nothing on the remaining 49% of days. Markov’s
inequality generalizes this type of thinking to give a bound on the probability of a
random variable being greater than a specific value.

Exercise: Why is the assumption that the variable is non-negative important in the
above reasoning? Would it still hold if the “generous” stranger could take money from
you?
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Chebyshev’s Inequality

Let X be a random variable with finite expectation and variance. For any a > 0,

Pr(|X − E[X]| ≥ a
√

Var[X]) ≤ 1

a2
.

The variance ofX , i.e., Var[X] = E[(X−E[X])2], is a measure how much on average
X diverges from its expectation. If we have a bound on the variance of X , we can
bound the probability that X significantly diverges from its expectation. This bound
is very useful when X is a sum of other random variables—e.g., X =

∑n
i=1Xi—that

are not fully independent. The standard proof of Chebyshev’s inequality is a relatively
easy application of Markov’s inequality, which uses the fact that (X − E[X])2 is a
non-negative variable.

Chernoff Bound (Multiplicative Concentration)

Let X1, . . . , Xn be independent random variables taking on values in [0, 1]. Let X =
∑n

i=1Xi and let
µ = E[X].

For any δ ∈ [0, 1],
Pr(X ≤ (1− δ)µ) ≤ e−δ2µ/2,

and
Pr(X ≥ (1 + δ)µ) ≤ e−δ2µ/3.

For any δ ≥ 1,
Pr(X ≥ (1 + δ)µ) ≤ e−δµ/3.

Consider tossing an unbiased coin. Intuitively, you expect that the fraction of both
heads and tails will converge to 1/2 as the number of trials increases. But how fast is it
going to happen? This is where the Chernoff bound becomes very useful. As opposed
to Chebyshev’s inequality when applied to a sum of variables, it assumes independent
events. This inequality can also be proved via Markov’s inequality but the proof is
more sophisticated.

Exercise: In the example above, what is the probability that the fraction of heads is at
most 2/5 or at least 3/5 as a function of n, the number of coin tosses? Set Xi = 1 if
in the i-th trial the coin comes up heads, and set Xi = 0, otherwise.
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Collisions (the Birthday Paradox)

We say that there is a collision in a set of samples if two of them are identical.

Consider k independent samples x1, x2, . . . , xk from the uniform distribution on {1, . . . , n}. If k ≥ 2d
√
ne,

then the probability of a collision in this set of samples is at least 1/2.

Why? Suppose that there is no collision in the set of the first d
√
ne samples, i.e., x1,

. . . , xd√ne. Then the probability of any other sample colliding with one of them is at
least d

√
ne/n ≥ 1/

√
n. Since the samples are independent, the probability that none

of the other d
√
ne samples collide with them is at most(

1− 1√
n

)d√ne
≤ e−

1√
n
·
√
n

= e−1 < 1/2.

Note 1: It can be showed that the uniform distribution minimizes the probability of a
collision, so this bound holds for any distribution, not just the uniform distribution.

Note 2: This problem is referred to as the birthday paradox. If one performs the exact
computation then a set of 23 people suffices to find a pair with the same birthday with
probability more than 1/2. This may seem counterintuitive, because that’s much less
than 365, the number of days in a typical year.

Consider k independent samples x1, x2, . . . , xk from the uniform distribution on {1, . . . , n}. For any
p ∈ [0, 1], if k <

√
2np, the probability of seeing a collision is less than p.

Why? For each pair xi and xj , the probability that they are identical, i.e., collide,
is 1

n . Hence the expected number of identical pairs of samples is
(
k
2

)
· 1n < k2

2n . By
Markov’s inequality, the probability that at least one pair of samples is identical, which
is equivalent to having a collision in the set of samples, is at most k2

2n . If k <
√

2np,
this is less than p.

In particular, this implies that if we want to see a pair of identical elements drawn
with constant probability, we need Ω(

√
n) samples, i.e., the asymptotic behavior of

the previous bound is tight.
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Hoeffding’s Inequality

Let X1, . . . , Xn be independent random variables such that each Xi ∈ [ai, bi]. For any t ≥ 0,

Pr

(∣∣∣∣∣
n∑
i=1

Xi − E[Xi]

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

The scenario in which this inequality is most useful in this course is the case of Xi’s
being indicator variables, or more generally, Xi ∈ [0, 1] for all i ∈ [n]. In this case,
the inequality becomes

Pr

(∣∣∣∣∣
n∑
i=1

(Xi − E[Xi])

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−2t2/n

)
for any t ≥ 0. Alternately, we can write it as

Pr

(∣∣∣∣∣
n∑
i=1

(Xi − E[Xi])

∣∣∣∣∣ ≥ εn
)
≤ 2 exp

(
−2ε2n

)
for any ε ≥ 0. This should look very familiar to the Chernoff bound, and in fact, in
our last homework, we prove a weaker version of this inequality, using the Chernoff
bound. The additive bound in Hoeffding’s inequality is sometimes more convinient
than the multiplicative bound in the Chernoff bound.

Bonus: Non-probabilistic Inequalities

For any x ∈ R, 1 + x ≤ ex.

More inequalities and other useful info
may be added. Stay tuned!
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