Useful Probabilistic Inequalities

DS-563/CD-543 @ Boston University

Fall 2021 (last updated: 11/08/2021)

Union Bound

For any probabilistic events $\mathcal{E}_1, \ldots, \mathcal{E}_k$,

 $\Pr(\text{at least one of events } \mathcal{E}_1, \dots, \mathcal{E}_k \text{ has occured}) \leq \sum_{i=1}^k \Pr(\mathcal{E}_i),$

where $Pr(\mathcal{E}_i)$ denotes the probability of event \mathcal{E}_i .

In this class, we routinely use the union bound to show that we can avoid a set of bad events with good probability. For instance, consider bad events \mathcal{E}_1 , \mathcal{E}_2 , and \mathcal{E}_3 that can break our algorithm and occur with probability at most $\delta/4$, $\delta/5$, and $\delta/2$, respectively. Then the union bound allows us to say that our algorithm works correctly with probability at least $1 - (\delta/4 + \delta/5 + \delta/2) \ge 1 - \delta$.

Markov's Inequality

Let X be a non-negative random variable with $E[X] < \infty$. For any a > 0,

$$\Pr(X \ge a) \le \frac{E[X]}{a}.$$

Suppose that a generous stranger leaves an envelope with money in your mailbox every day. If on *average* there is \$100 in the envelope, how often is there at least \$200? Clearly, you cannot find this much in the envelope every day, because then the average would be at least \$200. Can you find this much 51% of the days? Again, the answer is no, because that would imply that the average would be at least $\frac{51}{100} \cdot \$200 = 102$, even if you assume that you get nothing on the remaining 49% of days. Markov's inequality generalizes this type of thinking to give a bound on the probability of a random variable being greater than a specific value.

Exercise: Why is the assumption that the variable is non-negative important in the above reasoning? Would it still hold if the "generous" stranger could take money from you?

Chebyshev's Inequality

Let X be a random variable with finite expectation and variance. For any a > 0,

$$\Pr(|X - E[X]| \ge a\sqrt{\operatorname{Var}[X]}) \le \frac{1}{a^2}.$$

The variance of X, i.e., $\operatorname{Var}[X] = E[(X - E[X])^2]$, is a measure how much on average X diverges from its expectation. If we have a bound on the variance of X, we can bound the probability that X significantly diverges from its expectation. This bound is very useful when X is a sum of other random variables—e.g., $X = \sum_{i=1}^{n} X_i$ —that are not fully independent. The standard proof of Chebyshev's inequality is a relatively easy application of Markov's inequality, which uses the fact that $(X - E[X])^2$ is a non-negative variable.

Chernoff Bound (Multiplicative Concentration)

Let X_1, \ldots, X_n be *independent* random variables taking on values in [0,1]. Let $X = \sum_{i=1}^n X_i$ and let $\mu = E[X]$.

For any $\delta \in [0, 1]$,

and

 $\Pr(X \ge (1+\delta)\mu) \le e^{-\delta^2 \mu/3}.$

 $\Pr(X \ge (1+\delta)\mu) \le e^{-\delta\mu/3}.$

 $\Pr(X \le (1 - \delta)\mu) \le e^{-\delta^2 \mu/2}.$

For any $\delta \geq 1$,

Consider tossing an unbiased coin. Intuitively, you expect that the fraction of both heads and tails will converge to 1/2 as the number of trials increases. But how fast is it going to happen? This is where the Chernoff bound becomes very useful. As opposed to Chebyshev's inequality when applied to a sum of variables, it assumes independent events. This inequality can also be proved via Markov's inequality but the proof is more sophisticated.

Exercise: In the example above, what is the probability that the fraction of heads is at most 2/5 or at least 3/5 as a function of n, the number of coin tosses? Set $X_i = 1$ if in the *i*-th trial the coin comes up heads, and set $X_i = 0$, otherwise.

Collisions (the Birthday Paradox)

We say that there is a *collision* in a set of samples if two of them are identical.

Consider k independent samples $x_1, x_2, ..., x_k$ from the uniform distribution on $\{1, ..., n\}$. If $k \ge 2\lceil \sqrt{n} \rceil$, then the probability of a collision in this set of samples is at least 1/2.

Why? Suppose that there is no collision in the set of the first $\lceil \sqrt{n} \rceil$ samples, i.e., x_1 , ..., $x_{\lceil \sqrt{n} \rceil}$. Then the probability of any other sample colliding with one of them is at least $\lceil \sqrt{n} \rceil / n \ge 1/\sqrt{n}$. Since the samples are independent, the probability that none of the other $\lceil \sqrt{n} \rceil$ samples collide with them is at most

$$\left(1 - \frac{1}{\sqrt{n}}\right)^{\lceil\sqrt{n}\rceil} \le e^{-\frac{1}{\sqrt{n}}\cdot\sqrt{n}} = e^{-1} < 1/2.$$

Note 1: It can be showed that the uniform distribution minimizes the probability of a collision, so this bound holds for any distribution, not just the uniform distribution.

Note 2: This problem is referred to as the *birthday paradox*. If one performs the exact computation then a set of 23 people suffices to find a pair with the same birthday with probability more than 1/2. This may seem counterintuitive, because that's much less than 365, the number of days in a typical year.

Consider k independent samples x_1, x_2, \ldots, x_k from the uniform distribution on $\{1, \ldots, n\}$. For any $p \in [0, 1]$, if $k < \sqrt{2np}$, the probability of seeing a collision is less than p.

Why? For each pair x_i and x_j , the probability that they are identical, i.e., collide, is $\frac{1}{n}$. Hence the expected number of identical pairs of samples is $\binom{k}{2} \cdot \frac{1}{n} < \frac{k^2}{2n}$. By Markov's inequality, the probability that at least one pair of samples is identical, which is equivalent to having a collision in the set of samples, is at most $\frac{k^2}{2n}$. If $k < \sqrt{2np}$, this is less than p.

In particular, this implies that if we want to see a pair of identical elements drawn with constant probability, we need $\Omega(\sqrt{n})$ samples, i.e., the asymptotic behavior of the previous bound is tight.

Hoeffding's Inequality

Let X_1, \ldots, X_n be *independent* random variables such that each $X_i \in [a_i, b_i]$. For any $t \ge 0$,

$$\Pr\left(\left|\sum_{i=1}^{n} X_i - E[X_i]\right| \ge t\right) \le 2\exp\left(-\frac{2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2}\right).$$

The scenario in which this inequality is most useful in this course is the case of X_i 's being indicator variables, or more generally, $X_i \in [0, 1]$ for all $i \in [n]$. In this case, the inequality becomes

$$\Pr\left(\left|\sum_{i=1}^{n} \left(X_i - E[X_i]\right)\right| \ge t\right) \le 2\exp\left(-2t^2/n\right)$$

for any $t \ge 0$. Alternately, we can write it as

$$\Pr\left(\left|\sum_{i=1}^{n} \left(X_i - E[X_i]\right)\right| \ge \epsilon n\right) \le 2\exp\left(-2\epsilon^2 n\right)$$

for any $\epsilon \ge 0$. This should look very familiar to the Chernoff bound, and in fact, in our last homework, we prove a weaker version of this inequality, using the Chernoff bound. The additive bound in Hoeffding's inequality is sometimes more convinient than the multiplicative bound in the Chernoff bound.

Bonus: Non-probabilistic Inequalities

For any $x \in \mathbb{R}$, $1 + x \le e^x$.

More inequalities and other useful info may be added. Stay tuned!