Homework 8 (due 3/30)

DS-210 @ Boston University

Spring 2022

Before you start...

Collaboration policy: You may verbally collaborate on required homework problems. However, you must
write your solutions independently without showing them to other students. If you choose to collaborate on
a problem, you are allowed to discuss it with at most 2 other students currently enrolled in the class.

The header of each assignment you submit must include the field “Collaborators:” with the names of
the students with whom you have had discussions concerning your solutions. If you didn’t collaborate with
anyone, write “Collaborators: none.* A failure to list collaborators may result in a credit deduction.

You may use external resources such as software documentation, textbooks, lecture notes, and videos
to supplement your general understanding of the course topics. You may use references such as books and
online resources for well known facts. However, you must always cite the source.

You may not look up answers to a homework assignment in the published literature or on the web. You
may not share written work with anyone else.

Submitting: Solutions should be submitted via Gradescope. The entry code is 3Y85PZ.

Grading: Whenever we ask for a solution, you may receive partial credit if your solution is not sufficiently
efficient or close to optimal. For instance, if we ask you to solve a specific problem that has a polynomial—
time algorithm that is easy to implement, but the solution you provide is exponentially slower, you are likely
to receive partial credit.

Late submission policy: No extensions, except for extraordinary circumstances. We accept submissions
submitted up to one day late, but we may deduct 10% of points.

Questions

To solve problems in this homework, you should use Rust. Your solution to the homework should con-
sist of two compilable Rust source files, solving each of the questions. Remember to include the header
“Collaborators* in your source files.

1. (20 points)

(a) Define a generic data type Point <T> representing points in the Euclidean plane with coordi-
nates of type T.



(b) Implement two methods for values of this type: .clockwise () and .counterclockwise ().
They should return a new point, corresponding to rotating the Euclidean plane around the origin
(i.e., point (0,0)) by 90 degrees, clockwise and counterclockwise respectively.

Hint 1: Look at a few examples of points undergoing such a transformation. What is the general
formula?

Hint 2: To implement the above methods, you can require that T implement traits Copy and
Neg. Sample types that meet these requirements are 132 and £64.

(The unary minus operator, i.e., computing —z given z, is provided via trait Neg. If a type
implements this trait, you can write —val for any value val of this type to get the negation of
val.)

More specifically, you can start the implementation of the methods from

impl<T:Copy + Neg<Output = T>> Point<T> ({
// Your implementation should be here.

}

(c) Show two examples of such points, one with coordinates of type £64 and the other with co-
ordinates of type 132. Rotate one of them clockwise and the other counterclockwise by 90
degrees.

2. (20 points)

(a) Create types corresponding to seconds, minutes, and hours, using the following syntax (i.e.,
make them tuple structs):

struct Seconds (i64);

(b) Create a trait Time that has two methods: to_seconds and to_string. The former should
return a new value of type Seconds with a corresponding number of seconds. The latter
should return a string with a description of the content of the type (recall the useful macro
format! (...), which we used recently in class). Implement this trait for values of the types
you just defined. Your types should now work as follows:

e Minutes (17) .to_string () should return “17 minutes”
* Hours (2) .to_seconds () .to_string () shouldreturn “7200 seconds”
e Hours (1) .to_string () should return “1 hour”

Try to make the output grammatically correct, i.e., make sure your use of the plural vs. singular
form is correct.

(c) Create a function insight that takes a reference to an object implementing trait Time and dis-
plays both this object as well as its value in seconds. For instance, ‘insight (&§Hours (10))
should output

10 hours = 36000 seconds

(d) Show examples of instantiating your data types and applying insight to constructed values.



