

DS-210: Programming for Data Science

Lecture 2: Select data science tools. Decision trees.

Survey outcomes

• Vedaant's office hours: Monday 3:45–5:45pm (UPDATE: NOTE THE SMALL CHANGE)

Survey outcomes

- Vedaant's office hours: Monday 3:45–5:45pm (UPDATE: NOTE THE SMALL CHANGE)
- Prerequisites:
 - We'll try to give you as many examples as possible
 - But you should study the self–study materials

Survey outcomes

- Vedaant's office hours: Monday 3:45–5:45pm (UPDATE: NOTE THE SMALL CHANGE)
- Prerequisites:
 - We'll try to give you as many examples as possible
 - But you should study the self–study materials

Task for next time:

- Get Jupyter Notebook or JupyterLab working on your computer
- Get comfortable using it

Python

- Assumption: Python already installed
- If not:
 - Either install directly
 - Or use Miniconda/Anaconda
- Make sure Python 3:

```
$ python --version
Python 3.9.9
```


Python

- Assumption: Python already installed
- If not:
 - Either install directly
 - Or use Miniconda/Anaconda
- Make sure Python 3:

\$ python --version
Python 3.9.9

Jupyter Notebook

Interactive version based on iPython

If not installed, can be installed via pip or conda

\$ pip install notebook

Run it with

\$ jupyter notebook

Jupyter Lab

Newer, will obsolete Jupyter Notebook

```
$ pip install jupyterlab
```

\$ jupyter-lab

CSV Files and Data input via pandas

Data often available in the CSV format:

Name, Number, PPG, YearBorn, TotalPoints Kareem, 33, 24.6, 1947, 38387 Karl, 32, 25.0, 1963, 36928 LeBron, 23, 27.0, 1984, 36381 Kobe, 24, 25.0, 1978, 33643 Michael, 23, 30.1, 1963, 32292

- Header line optional
- Separators vary: ", " and "; " are popular
- Strings with spaces or separators may be in quotes

"Malone, Karl", 32, 25.0, 1963, 36928

CSV Files and Data input via pandas

Data often available in the CSV format:

Name, Number, PPG, YearBorn, TotalPoints Kareem, 33, 24.6, 1947, 38387 Karl, 32, 25.0, 1963, 36928 LeBron, 23, 27.0, 1984, 36381 Kobe, 24, 25.0, 1978, 33643 Michael, 23, 30.1, 1963, 32292

- Header line optional
- Separators vary: ", " and "; " are popular
- Strings with spaces or separators may be in quotes

"Malone, Karl",32,25.0,1963,36928

Reading .csv or .xlx files is a popular task. Pandas are here to help you.

```
In [1]: import pandas as pd
         data = pd.read csv('players.csv')
          data
Out[1]:
              Name Number PPG YearBorn TotalPoints
          0 Kareem 33
                                          38387
                            24.6 1947
                            25.0 1963
          1 Karl
                    32
                                          36928
                            27.0 1984
          2 LeBron 23
                                          36381
          3 Kobe
                    24
                            25.0 1978
                                          33643
          4 Michael 23
                            30.1 1963
                                          32292
```


CSV Files and Data input via pandas

Data often available in the CSV format:

Name, Number, PPG, YearBorn, TotalPoints Kareem, 33, 24.6, 1947, 38387 Karl, 32, 25.0, 1963, 36928 LeBron, 23, 27.0, 1984, 36381 Kobe, 24, 25.0, 1978, 33643 Michael, 23, 30.1, 1963, 32292

- Header line optional
- Separators vary: ", " and "; " are popular
- Strings with spaces or separators may be in quotes

"Malone, Karl",32,25.0,1963,36928

Reading .csv or .xlx files is a popular task. Pandas are here to help you.

```
In [1]: import pandas as pd
         data = pd.read csv('players.csv')
          data
Out[1]:
              Name Number PPG YearBorn TotalPoints
          0 Kareem 33
                                          38387
                            24.6 1947
          1 Karl
                    32
                            25.0 1963
                                          36928
                            27.0 1984
          2 LeBron 23
                                          36381
          3 Kobe
                    24
                            25.0 1978
                                          33643
          4 Michael 23
                            30.1 1963
                                          32292
```

Access to specific cells and columns possible:

```
In [2]: data['YearBorn'][1]
Out[2]: 1963
```


Simple visualisation via matplotlib

```
In [3]: print("Points per game vs. year born:")
        import matplotlib.pyplot as plt
        fig,ax = plt.subplots(figsize=(8,8))
        ax.set_xlabel('Year born')
        ax.set_ylabel('Points per game')
        ax.scatter('YearBorn','PPG',data=data);
        Points per game vs. year born:
                                      1975
```


Simple visualisation via matplotlib

```
In [3]: print("Points per game vs. year born:")
        import matplotlib.pyplot as plt
       fig,ax = plt.subplots(figsize=(8,8))
        ax.set_xlabel('Year born')
        ax.set_ylabel('Points per game')
        ax.scatter('YearBorn','PPG',data=data);
```

Points per game vs. year born:


```
In [4]: print("Other attributes: 3rd radius, 4th color")
        data['radius'] = data['YearBorn'].subtract(1945)\
                                         .multiply(100)
        fig,ax = plt.subplots(figsize=(8,8))
        ax.set_xlabel('Total points')
        ax.set ylabel('Points per game')
        #ax.scatter('TotalPoints','PPG','radius',data=data);
        something else = data
        ax.scatter('TotalPoints','PPG','radius','Number',\
                   data=something else);
```

Other attributes: 3rd radius, 4th color

Machine learning: supervised vs. unsupervised

Supervised

- Labeled data
 - Example 1: images labeled with the objects: cat, dog, monkey, elephant, etc.
 - Example 2: medical data labeled with likelihood of cancer
- **Goal:** discover a relationship between attributes to predict unknown labels

Machine learning: supervised vs. unsupervised

Supervised

- Labeled data
 - Example 1: images labeled with the objects: cat, dog, monkey, elephant, etc.
 - Example 2: medical data labeled with likelihood of cancer
- **Goal:** discover a relationship between attributes to predict unknown labels

Unsupervised

- Unlabeled data
- Want to discover a relationship between data points
- Examples:
 - clustering: partition your data into groups of similar objects
 - dimension reduction: for high dimensional data discover important attributes
 - generate random faces based on a sample you see

Supervised learning: Decision trees

Popular machine learning tool for predictive data analysis:

- rooted tree
- start at the root and keep going down
- every internal node labeled with a condition
 - if satisfied, go left
 - if not satisfied, go right
- leafs labeled with predicted labels

Does a player like bluegrass?

Supervised learning: Decision trees

Popular machine learning tool for predictive data analysis:

- rooted tree
- start at the root and keep going down
- every internal node labeled with a condition
 - if satisfied, go left
 - if not satisfied, go right
- leafs labeled with predicted labels

Does a player like bluegrass?

Big challenge: finding a decision tree that matches data!

Reminder: Task for next time

- Get Jupyter Notebook or JupyterLab working on your computer
- Get comfortable using it
- I will share my slides which are a Jupyter Notebook and a recording of this lecture

