DS-210: Programming for Data Science

Lecture 3: Decision trees (continued).

?78 ¢

New students

e We're using Piazza (not Blackboard)

e Links from https://onak.pl/ds210

e Fill out the survey and send it to me

Everyone

e Jupyter Notebook / Jupyter Lab
e You can use it to open lecture slides
e Homework 1 out today (due next Wed)

e Vedaant's office hours: Mondays 3:45-5:45pm
@ MCS B51

New students Last time

e We're using Piazza (not Blackboard) e Supervised vs. unsupervised learning

e Links from https://onak.pl/ds210 e Decision trees

e Fill out the survey and send it to me

Everyone

e Jupyter Notebook / Jupyter Lab
e You can use it to open lecture slides
e Homework 1 out today (due next Wed)

e Vedaant's office hours: Mondays 3:45-5:45pm
@ MCS B51

Function arguments in Python: via position or name

In [1]: # simplest function definition
def foo(x, vy, z):
return x + 10 * y + 100 * z

print(foo(1,2,3))

321

Function arguments in Python: via position or name

In [1]: # simplest function definition In [2]: # add default values
def foo(x, vy, z): def moo(x, vy =0, z = 0):
return x + 10 * y + 100 * z return x + 10 * y + 100 * Zz
print(foo(1,2,3)) # only one argument is mandatory

print(moo(1l),moo(1,2),moo(1l,2,3))
321
1 21 321

Function arguments in Python: via position or name

In [1]: # simplest function definition In [2]: # add default values
def foo(x, vy, z): def moo(x, vy =0, z = 0):
return x + 10 * y + 100 * z return x + 10 * y + 100 * Zz
print(foo(1,2,3)) # only one argument is mandatory

print(moo(1l),moo(1,2),moo(1l,2,3))

321
1 21 321

In [3]: # can refer to all or some arguments via variable names
print(foo(z = 3, vy = 2, x = 1))
print(foo(l, z = 3, y = 2))
#won't work: print(foo(z = 3, y =2, 1))

321
321

Function arguments in Python: via position or name

In [1]: # simplest function definition
def foo(x, vy, z):
return x + 10 * y + 100 * z

print(foo(1,2,3))

321

In [3]: # can refer to all or some arguments via variable names
print(foo(z = 3, vy = 2, x = 1))
print(foo(l, z = 3, y = 2))

#won't work: print(foo(z =3, y =2, 1))

321
321

In [2]: # add default values
def moo(x, vy =0, z = 0):
return x + 10 * y + 100 * Zz

only one argument is mandatory
print(moo(1l),moo(1,2),moo(1l,2,3))

1 21 321

In [4]: # can arbitrarily skip over arguments
print(moo(l, z = 3))

301

Decision trees

Popular machine learning tool for predictive data
analysis:

e start at the root and keep going down

e every internal node labeled with a condition
= if satisfied, go left
= if not satisfied, go right

e leafs labeled with predicted labels

Does a player like bluegrass?

YearBorn < 1970

Decision trees

j ?
Popular machine learning tool for predictive data Does a player like bluegrass:

analysis:
YearBorn < 1970

e start at the root and keep going down

e every internal node labeled with a condition

= if satisfied, go left

= if not satisfied, go right

e leafs labeled with predicted labels [VES } { NO }

Big challenge: finding a decision tree that matches data!

Heuristics for constructing decision trees

e Start from a single node with all samples
e |terate:
= select a node

= use the samples in the node to split it

into children

= pass each sample to respective child

e [.abel leafs

Heuristics for constructing decision trees

e Start from a single node with all samples
e |terate:
= select a node

= use the samples in the node to split it

into children

= pass each sample to respective child

e [.abel leafs

Favorite color?

Heuristics for constructing decision trees

e Start from a single node with all samples Favorite color?

e Jterate: @
» select a node

= use the samples in the node to split it

into children o

= pass each sample to respective child

e [.abel leafs

Heuristics for constructing decision trees

e Start from a single node with all samples
e |terate:
= select a node

= use the samples in the node to split it

into children

= pass each sample to respective child

e [.abel leafs

Favorite color?

Heuristics for constructing decision trees

e Start from a single node with all samples
e |terate:
= select a node

= use the samples in the node to split it

into children

= pass each sample to respective child

e [.abel leafs

Favorite color?

Split selection

e Typical heuristic: select a split that improves

classification most

e Various measures of ”goodness” or

"badness":
= Information gain
= GInni impurity

= Variance

Split selection

e Typical heuristic: select a split that improves

classification most

e Various measures of ”goodness” or

"badness":
= Information gain
= GInni impurity

= Variance

Popular algorithms

e ID3
e C4.5
e C5.0
e CART (used by scikit-learn)

(feature several additional ideas)

Advantages and disadvantages of decision trees

?78 ¢

Advantages and disadvantages of decision trees

Advantages:

easy to interpret
not much data preparation needed
categorical and numerical data

relatively fast

Advantages and disadvantages of decision trees

Advantages:

easy to interpret
not much data preparation needed
categorical and numerical data

relatively fast

Disadvantages:

e can be very sensitive to data changes

e can create an overcomplicated tree that
matches the sample, but not the underlying

problem

e hard to find an optimal tree

Decision tree construction using sci1kit-1learn

Note: ignore machine learning context for now

First, we read our sample data and add information who likes pizza

Decision tree construction using sci1kit-1learn

Note: ignore machine learning context for now

First, we read our sample data and add information who likes pizza

In [5]: # Let's read our sample data
import pandas as pd
data = pd.read csv('players.csv')

data
Qut[5]:
Name Number PPG YearBorn TotalPoints
0 Kareem 33 246 1947 38387
1 Karl 32 25.0 1963 36928
2 LeBron 23 27.0 1984 36381
3 Kobe 24 25.0 1978 33643
4 Michael 23 301 1963 32292

Decision tree construction using sci1kit-1learn

Note: ignore machine learning context for now

First, we read our sample data and add information who likes pizza

In [5]: # Let's read our sample data In [6]: likes pizza = [1,0,0,1,0]
import pandas as pd data['LikesPizza'] = likes pizza
data = pd.read csv('players.csv') data
data

Qut([6]:
out[5]: Name Number PPG YearBorn TotalPoints LikesPizza
Name Number PPG YearBorn TotalPoints 0 Kareem 33 246 1947 38387 1

0 Kareem 33 246 1947 38387 1 Karl 32 250 1963 36928 0
1 Karl 32 25.0 1963 36928 2 LeBron 23 27.0 1984 36381 0
2 LeBron 23 27.0 1984 36381 3 Kobe 24 250 1978 33643 1
3 Kobe 24 25.0 1978 33643 4 Michael 23 30.1 1963 32292 0
4 Michael 23 30.1 1963 32292

X

Visualized

In [7]: import matplotlib.pyplot as plt
data['radius'] = [1000 for x in data['PPG']]
fig,ax = plt.subplots(figsize=(8,8))
ax.set xlabel('Total points')
ax.set ylabel('Points per game')
ax.scatter('TotalPoints', 'PPG', 'radius', 'LikesPizza',6 data=data);

@

29 1
28 A

2?- .

20 1

25- .

32000 33000 34000 35000 3000 37000 38000
Total points

Paints per game

Pa

Data selection

e set of inputs: X

e set of desired outputs:y

In [8]:

Out[8]:

data
Name Number PPG YearBorn TotalPoints LikesPizza radius
0 Kareem 33 246 1947 38387 1 1000
1 Karl 32 25.0 1963 36928 0 1000
2 LeBron 23 27.0 1984 36381 0 1000
3 Kobe 24 25.0 1978 33643 1 1000
4 Michael 23 30.1 1963 32292 0 1000

Data selection

e set of inputs: X

e set of desired outputs:y

In [8]: data In [9]: features = ['PPG', 'YearBorn', 'TotalPoints']
X = data[features]
Out[8]: y = data['LikesPizza']
Name Number PPG YearBorn TotalPoints LikesPizza radius pr int (X, y,sep='\n\n')
0 Kareem 33 246 1947 38387 1 1000
1 Karl 32 il S —— 0 1000 PPG YearBorn TotalPoints
2 LeBron 23 27.0 1984 36381 0 1000 0 24.6 1947 38387
3 Kobe 24 250 1978 33643 1 1000 1 25.0 1963 36928
4 Michael 23 30.1 1963 32292 0 1000 2 27.0 1984 36381
3 25.0 1978 33643
4 30.1 1963 32292
(0] 1
1 (0]
2 (0]
3 1
4 (0]
Name: LikesPizza, dtype: int64

Decision tree construction

In [10]: from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier(max leaf nodes =
random state = 0)
clf = clf.fit(X,y)

3.\

Visualizing the outcome

In [11]: from sklearn import tree
text = tree.export text(clf,feature names = features)
print(text)

--- PPG <= 26.00
- TotalPoints <= 35285.50

|

I

| | |--- class: 1

| | --- TotalPoints > 35285.50
| | | --- class: ©

|--- PPG > 26.00

| |--- class: ©

Visualizing the outcome

In [11]: from sklearn import tree

text = tree.export text(clf,feature names

print(text)

--- PPG <= 26.00
--- TotalPoints <= 35285.50

|
| |--- class: 1
| --- TotalPoints > 35285.50
| | --- class: ©
--- PPG > 26.00
|--- class: ©

features)

In [12]: tree.plot tree(clf,feature names = features);

PRPG == 26.0
gini = 0.48

samples =5

value = [3, 2]

TotalPoints <= 35285.5 -
il gini = 0.0
gini = 0.444 samples = 2

samples = 3 -
value = [1, 2] value =[2, 0]

gini = 0.0 gini= 05
samples = 1 samples = 2
value = [0, 1] value =[1, 1]

Closing remarks

e Suggested reading: https: //scikit-learn.org/stable /modules /tree.html

e Next time: using this in the context of a data science pipeline

e Homework 1 out tonight (announcement to be posted on Piazza)

