DS-210: Programming for Data Science

Lecture 6:
* Ethics of data processing (continued)
* Final project expectations
* Intro to SciPy

?78 ¢

Homework 1

e Due today

e Submissions via Gradescope (Entry code:
3Y85PZ)

e Submit a single IPython notebook
(preferred). Ora .z1p file. Or a few files.

Homework 1

e Due today

e Submissions via Gradescope (Entry code:
3Y85PZ)

e Submit a single IPython notebook
(preferred). Ora .z1p file. Or a few files.

Homework 2

e Out today
e Due next Wednesday

Ethics of data processing

e Lots of data sets have private information

e Last time: infamous examples
= Enron emails
= AOL search
= Netflix data set

Ethics of data processing

e Lots of data sets have private information

e Last time: infamous examples
= Enron emails
= AOL search
= Netflix data set

e Golden State Killer (operated in 1970s and
1980s)

= DNA database
= 3 relative submitted their DNA

= the search narrowed to a few people

What do you think about this?

Ethics of data processing

e Lots of data sets have private information e Golden State Killer (operated in 1970s and
1980s)
e Last time: infamous examples = DNA database
= Enron emails = a relative submitted their DNA
= AOL search = the search narrowed to a few people

= Netflix data set
What do you think about this?

e Bottom line:
= Be careful publishing any data

= You never know how something
might be used

= Respect privacy of subjects

X

Final project expectations
e You pick the topic

e Has to be related to graphs

= either graph data
(e.g., Stanford Large Network Dataset

Collection)

= or derived graph data

e You have to submit a proposal (due 3/18)
= try to be creative
» will give you feedback

= you will have to use Rust

X

Final project expectations
e You pick the topic

e Has to be related to graphs

= either graph data
(e.g., Stanford Large Network Dataset

Collection)

= or derived graph data

e You have to submit a proposal (due 3/18)
= try to be creative
= will give you feedback

= you will have to use Rust

Sample: Six Degrees of Separation

e Consider a graph in which people who

know each other are connected

e Conjecture: any pair of people at most 6

steps away from each other

e Sample problem: find out for a random
pairs of people how far they are from each

other on a social network

SciPy
e [ots of useful tools for scientific computing

e Highly optimized (uses Fortran, C, C++
under the hood)

e Builds on NumPy (like many other things)

SciPy

e [ots of useful tools for scientific computing

e Highly optimized (uses Fortran, C, C++
under the hood)

e Builds on NumPy (like many other things)

e What we plan to cover

Simple example today: interpolation
Clustering (k-means)
Linear algebra (linear regression)

Optimization

Interpolation / Extrapolation

Data: known data points

Goal: design a function that passes through the
data points and also give possible values

1. between them (interpolation) and

2. outside of their range (extrapolation)

Interpolation / Extrapolation

Data: known data points

Goal: design a function that passes through the
data points and also give possible values

1. between them (interpolation) and

2. outside of their range (extrapolation)

Example of interpolation

Lo L R FY R - "L - I I - - T ¥ -

X

Example of 1D interpolation

In [1]:

import numpy as np

from scipy.interpolate import interpld

X
y

#

data points. Options for kind: cubic,

np.arange(10)
np.array([1,4,5,2,5,2,8,9,4,3])

We now compute two functions interpolating the

previous, next,

f
g

interpld(x,y,kind="linear")
interpld(x,y,kind="'cubic")

linear, nearest

X

Example of 1D interpolation

In [1]:

import numpy as np
from scipy.interpolate import interpld

np.arange(10)
np.array([1,4,5,2,5,2,8,9,4,3])

X =

‘y_
data points. Options for kind: cubic,
previous, next,

f = interpld(x,y,kind="'linear")
g = interpld(x,y,kind="'cubic")

We now compute two functions interpolating the

linear, nearest

In [2]: import matplotlib.pyplot as plt

plt.figure(figsize=(10,8))
np.linspace(0,9,num=200,endpoint=True)

xplot =
plt.plot(x,y, 'o',xplot, f(xplot), ' '-",\
xplot,g(xplot),'--");

plt.legend(['data points', 'linear', 'qubic'],

loc="upper left');

10 4
& data points
linear
=== gubic
L
I
I
P

X
Example of 2D interpolation (f(x, y) = sin(x + y) * cos(x — y))

In [3]: from scipy.interpolate import Rbf
import math

samples = 200
side = 4*math.pi
plot grid size = 200

Sample points and compute the value of f on them
rng = np.random.default rng()

X = rng.random(samples)*side-side/2

y = rng.random(samples)*side-side/2

Z = np.sin(x+y) * np.cos(x-y)

compute the interpolating function
rbf = Rbf(x, y, z)

Compute grid points and interpolation values

for visualization

edges = np.linspace(-side/2, side/2, plot grid size+l)
centers = edges[:-1] + (edges[1l] - edges[2])/2

XI, YI = np.meshgrid(centers, centers)

ZI = rbf(XI, YI)

X

Example of 2D interpolation (f(x, y) = sin(x + y) * cos(x — y))

In [3]:

from scipy.interpolate import Rbf
import math

samples = 200
side = 4*math.pi
plot grid size = 200

Sample points and compute the value of f on them
rng = np.random.default rng()

X = rng.random(samples)*side-side/2

y = rng.random(samples)*side-side/2

Z = np.sin(x+y) * np.cos(x-y)

compute the interpolating function
rbf = Rbf(x, y, z)

Compute grid points and interpolation values

for visualization

edges = np.linspace(-side/2, side/2, plot grid size+l)
centers = edges[:-1] + (edges[1l] - edges[2])/2

XI, YI = np.meshgrid(centers, centers)

ZI = rbf(XI, YI)

In [4]: X edges, Y edges = np.meshgrid(edges, edges)
lims = dict(cmap='coolwarm', vmin=-1, vmax=1l)

plt.
plt.
plt.
plt.
plt.
plt.

.. H - 0.50
IR e
PR AT T

T8N 8

LR -‘-‘ L x Iu.5n

figure(figsize=(6,5.1))

pcolormesh(X edges, Y edges, ZI, **lims)
colorbar()

scatter(x, y, 10, [[0,0,0]])
xLlim(-side/2, side/2)

ylim(-side/2, side/2);

' E . 100
. l. 075

.o L 025
B

-0.75

-1.00

e black dots: the points we sampled

e blue

to red: interpolation value

X

In [5]:

3d visualization

import mpl toolkits

fig = plt.figure(figsize=(10,10))
ax = plt.axes(projection="'3d")
ax.plot surface(XI, YI, ZI)
plt.show();

0 In [5]: # 3d visualization In [6]: # broader view

import mpl toolkits side = 8*math.pi

fig = plt.figure(figsize=(10,10)) # Compute grid points and interpolation values

ax = plt.axes(projection="'3d") edges = np.linspace(-side/2, side/2, plot grid size+1)
ax.plot surface(XI, YI, ZI) centers = edges[:-1] + (edges[l] - edges[2])/2
plt.show(); XI, YI = np.meshgrid(centers, centers)

ZI = rbf(XI, YI)

visualization

X edges, Y edges = np.meshgrid(edges, edges)
plt.figure(figsize=(10,8))

plt.pcolormesh(X edges, Y edges, ZI, **1lims)
plt.colorbar()

plt.scatter(x, y, 10, [[0,0,0]])
plt.xlim(-side/2, side/2)

plt.ylim(-side/2, side/2);

100

075

- 050

025

- 000

-—0.25

-—0.50

—0.75

=1.00

