DS-210: Programming for Data Science
Lecture 7:

* Clustering
* k-means with SciPy

?78 ¢

Clustering

General idea

e Input: set of objects

e Some information about relationship

between them

e Goal: partition the objects into groups of

similar objects

Clearly: unsupervised learning

Clustering

General idea

e Input: set of objects

e Some information about relationship

between them

e Goal: partition the objects into groups of

similar objects

Clearly: unsupervised learning

Why clustering?

Clustering

General idea

e Input: set of objects

e Some information about relationship

between them

e Goal: partition the objects into groups of

similar objects

Clearly: unsupervised learning

Why clustering?

e Discover similar cases
e Make sense of data

e Reduce data size

Examples of popular types of clustering

e k—means
e correlation clustering

e (hierarchical) agglomerative clustering (HAC)

k—-means

e k is the target number of clusters
e Input: set § of points in R"

e Euclidean between points:

dist(x, y) = \ z”:(xf — J’f)z
i=1

e Ideal solution: set C C R" of k points that
minimize

Z mig(dist(x, c))?

XES

(points in C are cluster centers)

a4

e Clusters:

= Assign each point x € .S to the closest
ceC

» One cluster for each ¢ € C:

the points assigned to it

k—-means

e k is the target number of clusters
e Input: set § of points in R"

e Euclidean between points:

dist(x, y) = \ z”:(xf — y:‘)z
i=1

e Ideal solution: set C C R" of k points that
minimize

Z mig(dist(x, c))?

XES

(points in C are cluster centers)

a4

e Clusters:

= Assign each point x € .S to the closest
ceC

= One cluster for each ¢ € C:
the points assigned to it
Reality

e NP-hard

e Likely exponential time needed

k—-means

e k is the target number of clusters
e Input: set § of points in R"

e Euclidean between points:

dist(x, y) = \ z”:(xf — y:‘)z
i=1

e Ideal solution: set C C R" of k points that
minimize

Z mig(dist(x, c))?

XES

(points in C are cluster centers)

a4

e Clusters:

= Assign each point x € .S to the closest
ceC

» One cluster for each ¢ € C:

the points assigned to it

Reality

e NP-hard

e Likely exponential time needed

Typical heuristic

1. Seeding: Start from some solution C

2. Keep improving C until satisfied

X

Part 1: Initial solution (seeding)

Example 1: random assignment

e Option 1: select k points from .§

= likely to focus on the more populous

parts of the data set

e Option 2: select k points from the area to
which points belong

= points might end up outside of the

area of interest

= points may not be a minimum for any

point in .§

X

Part 1: Initial solution (seeding)

Example 1: random assignment Example 2: k—-means-++
e Option 1: select k points from .§ e very popular heuristic
= likely to focus on the more populous e iterative (i.e., add points one by one):
parts of the data set = given current C, assign weights to all
e Option 2: select k points from the area to points in .5
which points belong = weight(x) = min.ec(dist(x, ¢))?
= points might end up outside of the = draw next point with probabilities
N di proportional to the weights
= points may not be a minimum for any e relatively good approximation in expectation

point in .§

X

Part 2: Iterative improvement

Typical iteration

e Assign each point in x € .S to the closest
centerc € C

e For each c € C:

= let .S, be points assigned to C

= move ¢ to

1
S| 2

yES,
if .S, is not empty

s Note: the new location minimizes

Z (dist(x, ¢))>

xXES,

X

Part 2: Iterative improvement

Typical iteration When to stop

e Assign each point in x € .S to the closest e fixed number of steps?

center ¢ & € e the solution has stopped improving?

e For each c € C:

= let .S, be points assigned to C

= move ¢ to

1
S| 2

yES,
if .S, is not empty

s Note: the new location minimizes

Z (dist(x, ¢))>

xXES,

X

Part 2: Iterative improvement

Typical iteration

e Assign each point in x € .S to the closest
centerc € C

e For each c € C:

= let .S, be points assigned to C

= move ¢ to

1
S| 2

yES,
if .S, is not empty

s Note: the new location minimizes

Z (dist(x, ¢))>

xXES,

When to stop

e fixed number of steps?

e the solution has stopped improving?

General problems

e may get stuck in a local minimum
e may improve very slowly

e possibly good ideas:

= try different seeding methods

= run multiple times from different

starting points

Example: Reduce number of colors in an image

In [1]1: # PIL usually distributed as "Pillow"
from PIL import Image
import numpy as np
image = Image.open("cds.png")
image

Out[1l]:

Example: Reduce number of colors in an image

In [1]: # PIL usually distributed as "Pillow"
from PIL import Image

import numpy as np Typical COlOI‘ l‘epresentation: RGB
image = Image.open("cds.png")
image

— e (red, green, blue), eachin 0 ... 255

e Ulnt8 =8 bits =1 byte

Example: Reduce number of colors in an image

In [1]: # PIL usually distributed as "Pillow"
from PIL import Image

import numpy as np Typical COlOI‘ l‘epresentation: RGB
image = Image.open("cds.png")
image

e (red, green, blue), eachin0 ... 255
e Ulnt8 =8 bits =1 byte

Out[1l]:

In [2]: arr = np.asarray(image)
drop additional transparency channel (alpha)

arr = arrf[:,:,:3]
print(arr.shape)
arr

(400, 711, 4)

Out[2]: array([[[53, 82, 152, 255],
[52, 82, 152, 255],
[50, 80, 152, 255],

[13, 13, 11, 255],
[12, 12, 10, 255],
[18, 18, 16, 255]1],

[[56, 85, 156, 255],

[52, 81, 152, 255],

[51, 81, 153, 255],

[14, 14, 12, 255],

5 . ~ [15, 15, 13, 255],
c Y 4 [18, 18, 16, 25511,

TEC =EE]

Example: Reduce number of colors in an image

In [1]: # PIL usually distributed as "Pillow"
from PIL import Image

import numpy as np Typical COlOI‘ l‘epresentation: RGB
image = Image.open("cds.png")
image

e (red, green, blue), eachin0 ... 255
e Ulnt8 =8 bits =1 byte

Out[1l]:

In [3]: arr = np.asarray(image)
drop additional transparency channel (alpha)
arr = arrf[:,:,:3]
print(arr.shape)
arr

(400, 711, 3)

Out[3]: array([[[53, 82, 152],
[52, 82, 152],
[50, 860, 152],

[13, 13, 11],
[12, 12, 10],
[18, 18, 16]1,

[[56, 85, 156],
[52, 81, 152],
[51, 81, 153],

i.i&, 14, 121,
[15, 15, 1317,
? Y 4 [18, 18, 16]],

TEC]

Example: Reduce number of colors in an image

In [4]: # save dimensions
height,width,color dim = arr.shape
turn into a "1D" array of pixels
arr = arr.reshape(-1,color dim)

arr

Out[4]: array([]

[
[
[
[
i

53,
52,
50,

42,
39,
43,

82,
82,
80,

44,
43,
50,

152],
152],
152],

597,
61],
69]], dtype=uint8)

Example: Reduce number of colors in an image

In [4]: # save dimensions In [5]: from scipy.cluster.vq import kmeans, kmeans2
height,width,color dim = arr.shape arr = arr.astype(np.float32)
turn into a "1D" array of pixels codebook, = kmeans(arr,2)
arr = arr.reshape(-1,color dim) # codebook, = kmeans2(arr,16,minit="'++")
arr codebook
Out[4]: array([[53, 82, 152], Out[5]: array([[131.33862 , 153.9153 , 194.26178],
[52, 82, 152], [44.8325 , 44.519474, 50.553364]], dtype=floa
[50, 80, 152], t32)

[42, 44, 59],
[39, 43, 611,
[43, 50, 69]], dtype=uint8)

Example: Reduce number of colors in an image

In [6]: # assign closest center to each pixel
from scipy.cluster.vg import vq

encoding, = vq(arr,codebook)
encoding
OQut[6]: array([1l, 1, 1, ..., 1, 1, 1], dtype=int32)

Example: Reduce number of colors in an image

In [6]: # assign closest center to each pixel

In [7]1: # make color coordinates small integers
from scipy.cluster.vg import vq

codebook = codebook.astype(np.uint8)
encoding, = vq(arr,codebook) codebook
encoding
out[6]: array([1, 1, 1, ..., 1, 1, 1], dtype=int32) Out[7]: array([[131, 153, 194],

[44, 44, 50]], dtype=uint8)

Example: Reduce number of colors in an image

In [6]: # assign closest center to each pixel

In [7]1: # make color coordinates small integers
from scipy.cluster.vg import vq

codebook = codebook.astype(np.uint8)
encoding, = vq(arr,codebook) codebook
encoding
out[6]: array([1, 1, 1, ..., 1, 1, 1], dtype=int32) Out[7]: array([[131, 153, 194],

[44, 44, 50]], dtype=uint8)

Example: Reduce number of colors in an image

In [6]:

Out[6]:

In [8]:

Out[8]:

assign closest center to each pixel
from scipy.cluster.vg import vq

encoding, = vq(arr,codebook)
encoding
array([1, 1, 1, ..., 1, 1, 1], dtype=int32)

map entries to closest colors

newarr = [codebook[entry] for entry in encoding]
newarr = np.array(newarr)

hewarr

array([[44, 44, 501,
[44, 44, 50],
[44, 44, 50],

[44, 44, 50],
[44, 44, 50],
[44, 44, 50]], dtype=uint8)

In [71: # make color coordinates small integers
codebook = codebook.astype(np.uint8)
codebook

Out[7]: array([[131, 153, 194],
[44, 44, 50]], dtype=uint8)

Example: Reduce number of colors in an image

In [6]: # assign closest center to each pixel

Out[6]:

from scipy.cluster.vg import vgq
encoding, = vq(arr,codebook)
encoding

array([1, 1, 1, ..., 1, 1, 1], dtype=int32)

In [8]: # map entries to closest colors

Out[8]:

newarr = [codebook[entry] for entry in encoding]
newarr = np.array(newarr)
newarr

array([[44, 44, 501,
[44, 44, 50],
[44, 44, 50],

[44, 44, 50],
[44, 44, 50],
[44, 44, 50]], dtype=uint8)

In [7]: # make color coordinates small integers
codebook = codebook.astype(np.uint8)
codebook

Out[7]: array([[131, 153, 194],
[44, 44, 50]], dtype=uint8)

In [9]: newarr = newarr.reshape(height,width,color dim)

newarr

Out[9]: array([[[44, 44, 50],
[44, 44, 50],
[44, 44, 50],
[44, 44, 50],
[44, 44, 50],
[44, 44, 50]],

[[131, 153, 194],
[44, 44, 50],
[44, 44, 50],
[44, 44, 50],
[44, 44, 50],
[44, 44, 50]],

[[131, 153, 194],
[44, 44, 50],
[44, 44, 50],

[44, 44, 50],
[44, 44, 50],
[44, 44, 50]],

Example: Reduce number of colors in an image

In [10]: image = Image.fromarray(newarr)
image.save("test.png")
image

Out[l0]:

Example: Reduce number of colors in an image

In [4]:

out[4]:

save dimensions
height,width,color dim = arr.shape
turn into a "1D" array of pixels
arr = arr.reshape(-1,color dim)

arr

array([[53,
[52,
[50,
[42,
[39,
[43!

82,
82,
80,

44,
43,
50,

152],
152],
152],

597,
61],
69]], dtype=uint8)

In [11]: from scipy.cluster.vqg import kmeans, kmeans2

arr = arr.astype(np.float32)

#codebook, = kmeans(arr,2)

codebook, = kmeans2(arr,16,minit="'++")

codebook

Out[11]: array([[20.919214, 20.857271, 20.544157],

[224.16663 , 230.47906 , 237.03946],
[82.67631 , 129.56158 , 200.35356],
[169.48045 , 160.82599 , 166.21234],
[36.128433, 35.52045 , 38.220963],
[62.307972, 75.69994 , 105.28504],
[125.72168 , 131.8019 , 152.09633],
[177.50243 , 196.5755 , 228.81677 1],
[129.51418 , 165.71692 , 217.94589],
[138.75111 , 117.28548 , 113.688225],
[87.882614, 98.428535, 122.83324],
[52.486977, 51.429337, 59.03327 1],
[106.24081 , 89.817 , 89.622925],
[77.11434 , 68.19252 , 71.484474],
[205.93745 , 197.98878 , 199.40974],
[62.69038 , 96.97973 , 166.9947]], dtype=floa

t32)

Example: Reduce number of colors in an image

In [12]: # assign closest center to each pixel
from scipy.cluster.vg import vgq
encoding, = vq(arr,codebook)
encoding

Qut[12]: array([15, 15, 15, ..., 11, 11, 11], dtype=int32)

Example: Reduce number of colors in an image

In [12]: # assign closest center to each pixel

In [13]: # make color coordinates small integers

from scipy.cluster.vg import vgq codebook = codebook.astype(np.uint8)

encoding, = vq(arr,codebook) codebook
encoding

Outf[12]: array([15, 15, 15, ..., 11, 11, 11], dtype=int32) Out[13]: array([[20,
[224,
[82,
[169,
[36,
[62,
[125,
[177,
[129,
[138,
[87,
[52,
[106,
[77,
[205,
[62,

20,
230,
129,
160,

35,

75,
131,
196,
165,
117,

98,

51,

89,

68,
197,

96,

2017,
237],
200],
166],

38],
105],
1521,
228],
2171,
113],
122],

59],

89],

717,
199],
166]], dtype=uint8)

X

Example: Reduce number of colors in an image

In [12]: # assign closest center to each pixel In [13]: # make color coordinates small integers
from scipy.cluster.vg import vgq codebook = codebook.astype(np.uint8)
encoding, = vq(arr,codebook) codebook
encoding

Out[12]: array([15, 15, 15, ..., 11, 11, 11], dtype=int32) Out[13]: array([[20, 20, 20],

[224, 230, 237],
[82, 129, 200],
[169, 160, 166],
[36, 35, 38],
[62, 75, 105],
[125, 131, 152],
[177, 196, 228],
[129, 165, 217],
[138, 117, 1131,
[87, 198, 122],
[52, 51, 59],
[166, 89, 89],
[77, 68, 711,
[205, 197, 199],
[62, 96, 166]], dtype=uint8)

In [14]: # map entries to closest colors
newarr = [codebook[entry] for entry in encoding]
newarr = np.array(newarr)
newarr

Out[14]: array([[62, 96, 166],
[62, 96, 166],
[62, 96, 166],

[52, 51, 59],

’ ?’ [52, 51, 59],

[52, 51, 59]], dtype=uint8)

X

Example: Reduce number of colors in an image

In [12]: # assign closest center to each pixel In [13]: # make color coordinates small integers
from scipy.cluster.vg import vgq codebook = codebook.astype(np.uint8)
encoding, = vq(arr,codebook) codebook
encoding

Out[12]: array([15, 15, 15, ..., 11, 11, 11], dtype=int32) Out[13]: array([[20, 20, 20],

[224, 230, 237],
[82, 129, 200],
[169, 160, 166],
[36, 35, 38],
[62, 75, 105],
[125, 131, 152],
[177, 196, 228],
[129, 165, 217],
[138, 117, 1131,
[87, 198, 122],
[52, 51, 59],
[166, 89, 89],
[77, 68, 711,
[205, 197, 199],
[62, 96, 166]], dtype=uint8)

In [14]: # map entries to closest colors In [15]: newarr = newarr.reshape(height,width,color dim)
newarr = [codebook[entry] for entry in encoding] newarr
newarr = np.array(newarr)
newarr Out[15]: array([[[62, 96, 166],
[62, 96, 166],
Out[14]: array([[62, 96, 166], [62, 96, 166],
[62, 96, 166], sy
[62, 96, 166], [20, 20, 20],
L [20, 20, 20],
[52, 51, 59], [20, 20, 20]],
. o [52, 51, 591,
? ? [52, 51, 59]], dtype=uint8) [[62, 96, 166],

[62, 96, 166],

Example: Reduce number of colors in an image

In [16]: image = Image.fromarray(newarr)
image.save("test.png")
image

Out[l6]:

Final comments

Warning: Normalizing your data may
be useful or crucial

e You have to make sure that all relevant
coordinates have some impact

e Sample solution: make the variance /
standard deviation of each coordinate
identical

e Implemented as
scipy.cluster.vg.whiten

Final comments

Warning: Normalizing your data may
be useful or crucial

e You have to make sure that all relevant
coordinates have some impact

e Sample solution: make the variance /
standard deviation of each coordinate
identical

e Implemented as
scipy.cluster.vg.whiten

Some k—means implementations

e Two implementations in SciPy
= scipy.cluster.vq.kmeans
= scipy.cluster.vq.kmeans?2

e scikit-learn:
sklearn.cluster.KMeans

e Feel free to experiment to see which one is
better

