DS-210: Programming for Data Science

Lecture 8: Optimization and Linear Programming

?78 ¢

Updates

e HW 1 grades to be posted today

e HW 2 due today
e HW 3 already posted yesterday

Optimization

e Traditional area of Operations Research

Optimization

e Traditional area of Operations Research

Why study optimization?

e Important when making business decision
based on data

e Also at heart of many machine learning
methods

= k—-means (previous lecture)

= deep learning and neural networks

X

Today: Linear Programming

General setting

e a number of real variables: x1, X2, ..

e a number of linear constraints:

bii1x1 + -+ biuxy, < di

bi1x1 + - + by yxy, < d;

e Goal: maximize or minimize

C1X1 +CrX> + - + CyhXy

-;xﬂ

X

Today: Linear Programming

General setting

e a number of real variables: x1, X2, ..

e a number of linear constraints:

bii1x1 + -+ biuxy, < di

bi1x1 + - + by yxy, < d;

e Goal: maximize or minimize

C1X1 +CrX> + - + CyhXy

Simple Example

., Xp e variables: x and y

¢ linear constraints:
x >0
y =0
Sx +4y <20
3x +5y L 15

¢ Goal: maximize x + y

Simple Example

e variables: x and y

¢ linear constraints:
x>0
y=>0
S5x +4y <20
3x+5y <15

¢ Goal: maximize x + y

<

{: 0

>

Simple Example

e variables: x and y

¢ linear constraints:
x>0
y=>0
S5x +4y <20
3x+5y <15

¢ Goal: maximize x + y

Simple Example

e variables: x and y

¢ linear constraints:
x>0
y=>0
S5x +4y <20
3x+5y <15

¢ Goal: maximize x + y

Simple Example

e variables: x and y

¢ linear constraints:
x>0
y=>0
S5x +4y <20
3x+5y <15

¢ Goal: maximize x + y

Simple Example

e variables: x and y

¢ linear constraints:
x>0
y=>0
S5x +4y <20
3x+5y <15

¢ Goal: maximize x + y

Example: get cars to dealerships cheaply

e Five dealerships with demands:
[20,40,10,25,10]

e Three warehouses with inventory:
[25,45,40]

e The cost of moving one car from warehouse

1 to dealership j: cost[1][]]

Goal: Satisty all demands while paying as little as
possible for moving cars

In [1]:

In [2]:

demands = [20,40,10,25,10]
inventory = [25,45,40]

import numpy as np

set costs to random between 1000 and 2000

cost = np.random.uniform(low=1000.0,high=2000.0,
size=(3,5))

print(cost)

[[1485.41300256 1838.31428107 1324.37968618 1577.6532040
8 1672.03912278]

[1366.19702012 1056.23740292 1218.76659577 1912.6684397
2 1931.46773677]

[1088.56968831 1974.23851271 1377.95928388 1883.3667563
2 1780.14736407]]

Example: get cars to dealerships cheaply

In [1]: demands = [20,40,10,25,10]

e Five dealerships with demands: inventory = [25,45,40]
[20;40; 10:25:' 10] In [2]: import numpy as np
.) # set costs to random between 1000 and 2000
e Three warehouses with inventory: cost = np.random.uniform(low=1000.0,high=2000.0,
size=(3,5))
[25,45,40] print(cost)
® The COSt Of mOVing one car from warehouse [[1485.41300256 1838.31428107 1324.37968618 1577.6532040

8 1672.03912278]

: L : . [1366.19702012 1056.23740292 1218.76659577 1912.6684397
1 to dealershlp j:cost[1][7] 2 1931.46773677]

[1088.56968831 1974.23851271 1377.95928388 1883.3667563
2 1780.14736407]]

Goal: Satisty all demands while paying as little as
possible for moving cars

Variables X; ;: correspond to the number of cars moved from warehouse i to dealership ;.

What constraints do we need?

X

Example: get cars to dealerships cheaply

Can't move negative numbers of cars:

Example: get cars to dealerships cheaply

Can't move negative numbers of cars:
xij 2

Each warehouse I can't send more than its inventory:
5

2 x;; < 1nventoryl[i]
J=1

Example: get cars to dealerships cheaply

Can't move negative numbers of cars:
xij 2

Each warehouse I can't send more than its inventory:
5

Z x;; < 1nventoryl[i]
J=1

Demand of each dealership j is satisfied:
3

2 Xij = demand[j]

i=1

Example: get cars to dealerships cheaply

Can't move negative numbers of cars:
xij 2

Each warehouse I can't send more than its inventory:
5

Z x;; < 1nventoryl[i]
J=1

Demand of each dealership j is satisfied:
3

2 Xij = demand[j]

i=1

Goal: minimize total cost Zle 2?21 xi.j - cost[i][/]
? "4

Solving linear programming
with SciPy

https://docs.scipy.org /doc/scipy /reference
/generated /scipy.organize.linprog.html

scipy.optimize.linprog

scipy.optimize.linprog(c, A ub=None, b ub=None, A eq=None, b eq=None, bounds=None,

method="'interior-point’', callback=None, options=None, x@=None) [source]

Linear programming: minimize a linear objective function subject to linear equality and inequality constraints.

Linear programming solves problems of the following form:

min ¢!z

such that A,z << by,
Aegx = bey,

[<z < u,

where is a vector of decision variables; ¢, by, by, [, and u are vectors; and A,;; and A., are matrices.
Alternatively, that's:
minimize:
c @ x
such that:

A ub @ % == b _ub
A_eq @ x == b_eq
1b == x == ub

2084
] ; ?Note that by default 1b = @ and ub = MNone unless specified with bounds.

Notes:

e Make sure you understand the matrix
multiplication notation in the docs

e Adjust your linear program to the required
form:

= Make constraints "less then" with
variables on the left

= Make minimization the goal
(multiply by —1 if you are

maximizing!)

Applying SciPy to our problem

In [3]: # convert cost to one dimensional vector

C = cost.ravel()
print(c)

[1485.41300256 1838.31428107 1324.37968618 1577.65320408 1672.03912278
1366.19702012 1056.23740292 1218.76659577 1912.66843972 1931.46773677
1088.56968831 1974.23851271 1377.95928388 1883.36675632 1780.14736407]

Applying SciPy to our problem

In [3]: # convert cost to one dimensional vector
C = cost.ravel()
print(c)

[1485.41300256 1838.31428107 1324.37968618 1577.65320408 1672.03912278
1366.19702012 1056.23740292 1218.76659577 1912.66843972 1931.46773677
1088.56968831 1974.23851271 1377.95928388 1883.36675632 1780.14736407]

In [4]: # make sure not too much transported out of each warehouse
zeros,ones = [0] * 5, [1] * 5
A ub = [
ones + zeros + zeros,
Zeros + ones + zeros,
Zeros + zeros + ones

]
b ub = inventory
A ub,b ub
out[4}: (1, 1, 1, 1, 1, ©, @, O, ©, O, B, O, O, 0, 0],
[6, 6, @, ©, ©, 1, 1, 1, 1, 1, O, @, O, O, O],
[6, 6, 0, O, O, O, O, O, O, O, 1, 1, 1, 1, 111,
[25, 45, 40])

X

In [5]: # make sure demands at dealerships are satisified
def dealearship(j):
jth = [1 if k == j else 0 for k in range(5)]
return jth + jth + jth
A eq = [dealearship(j) for j in range(5)]
b eq = demands

A eq,b eq
ovut(5]: ([, 6, 6, @6, 6, 1, 0, @, 6, ©, 1, 0, O, O, 0],
(6, 1, 6, 6, 0, 6, 1, 06, @, 0, 0, 1, 0, 0, 0],
(6, ¢, 1, 0, 0, ©, 6, 1, @, 6, 6, 0, 1, O, O],
(6, ¢, 6, 1, 0, ©, 6, O, 1, ©, 6, 0, 0, 1, O],
[0, 6, @, @, 1, 6, 6, @, O, 1, O, O, O, O, 1]],
[20, 40, 10, 25, 10])

In [5]: # make sure demands at dealerships are satisified
def dealearship(j):
jth = [1 if k == j else 0 for k in range(5)]
return jth + jth + jth
A eq = [dealearship(j) for j in range(5)]
b eq = demands

A eq,b eq
ut[5): ([I[1, ©, 6, ©, O, 1, 6, ©, @, 6, 1, 0, O, 0, O],
(6, 1, 6, 6, 0, 6, 1, 06, @, 0, 0, 1, 0, 0, 0],
(6, ¢, 1, 0, 0, ©, 6, 1, @, 6, 6, 0, 1, O, O],
(6, ¢, 6, 1, 0, ©, 6, O, 1, ©, 6, 0, 0, 1, O],
[0, 6, @, @, 1, 6, 6, @, O, 1, O, O, O, O, 1]],
[20, 40, 10, 25, 10])

In [6]: # make sure variables are non-negative
(None means no upper or lower bound)
bounds = [(0@,None) for in range(15)]

In [7]: from scipy.optimize import linprog
linprog(c,A ub,b ub,A eq,b eq,bounds,method="'revised simplex")

Qut[7]: con: array([©., 0., 0., 0., 0.])
fun: 134247.32302369346
message: 'Optimization terminated successfully.'
nit: 14
slack: array([0., 0., 5.1)
status: 0
success: True
x: array([0., ©6., ©., 25., 0., 0., 40., 5., 0.,
0., 10.])

X

Various optimization options

Parameter method

e Simplex (simplex, revised simplex)
s better for this class

= will give you "true" zeros and more
accurate numbers

e Default method: Interior point (1nterior-
point)

= faster for some inputs

e Look into highs-* for more highly
optimized versions

X

Various optimization options Digression: How to check if
something is zero?

Parameter method

e Simplex (simplex, revised simplex)
s better for this class

= will give you "true" zeros and more
accurate numbers

e Default method: Interior point (1nterior-
point)

= faster for some inputs

e Look into highs-* for more highly
optimized versions

X

Various optimization options Digression: How to check if
something is zero?

Parameter method

With finite—precision computer arithmetic, you

e Simplex (simplex, revised simplex) should check if | x| < 10_6 or another sufficiently

: 11 b
= better for this class small number

= will give you "true" zeros and more
accurate numbers

e Default method: Interior point (1nterior-
point)

= faster for some inputs

e Look into highs-* for more highly
optimized versions

X

Various optimization options

Parameter method

e Simplex (simplex, revised simplex)
s better for this class

= will give you "true" zeros and more
accurate numbers

e Default method: Interior point (1nterior-
point)

= faster for some inputs

e Look into highs-* for more highly
optimized versions

Digression: How to check if
something is zero?

With finite—precision computer arithmetic, you

should check if | x| < 107 or another sufficiently
small number

In [8]: essentially zero = 0.3 - 3 * 0.1
print("Test 1:", essentially zero == 0)

better test
def is zero(x):

return x < le-6 and x > -1e-6
print("Test 2:", is zero(essentially zero))

Test 1: False
Test 2: True

Convex vs. non-convex optimization

YA

—
X

Convex Non-convex

e Linear programming is an example of convex optimization

e Convex optimization often easier

?78 ¢

<Y

