DS-210: Programming for Data Science

Lecture 14: Overview of programming languages.
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Comment on Homework 4, Questions 3 & 4
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Various levels

e Native code

e Assembler

= pros: as fine control as in native code

= cons: not portable
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Various levels

e Native code

e Assembler

= pros: as fine control as in native code

= cons: not portable

e High level

m various levels of closeness to the

architecture: from C to Prolog

= efficiency:

varies

could optimize better

very portable

easier to build large projects

some languages are resource—

efficient
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Interpreted vs. compiled

Interpreted:

e An application (interpreter) reads commands

one by one and executes them.
e One step process to run an application:

= python hello.py




Interpreted vs. compiled

Interpreted:

e An application (interpreter) reads commands

one by one and executes them.
e One step process to run an application:

= python hello.py

("Fully") Compiled:

e Translated to native code by compiler

e Usually more efficient

e Two steps to execute:
1. Compile (Rust: rustc hello.rs)
2. Run (Rust: ./hello)

Compiled to intermediate format:

e Example: Java
s Portable intermediate format

= Needs another application, Java
virtual machine, that knows how to

interpret it



Type checking: static vs. dynamic

In [1]: def add(x,y):
Dynamic (e.g., Python): return x + y
print(add(2,2))

print(add("a","b"))

e checks if an object can be used for specific PEEBERG T

. . . a4
operation during runtime ab
® PrOS: L
. TypeError Traceback (mos
= don't have to specity the type of t recent call last)
<ipython-input-1-fcOed4de2672> in
object 4 print(add(2,2))

5 print(add("a","b"))
. ----> 6 print(add(2,"b"))
= procedures can work for various

<ipython-input-1-fc@ed4de2672> in (X, y)

t es 1 def add(x,y):
yp —-e-> 2 return x + vy
. . 3
= faster or no compilation 4 print(add(2,2))

5 print(add("a","b"))
® CONs:

TypeError: unsupported operand type(s) for +: 'int' and
'str'

s slower at runtime

= problems are detected late




Type checking: static vs. dynamic
Static (e.g, C++, Rust, OCaml, Java):

e checks if types of objects are as desired
® pros:
= faster at runtime
= type mismatch detected early
® cons:
» often need to be explicit with the type

= making procedures generic may be
difficult

= potentially slower compilation




Type checking: static vs. dynamic
Static (e.g, C++, Rust, OCaml, Java):

e checks if types of objects are as desired
® pros:
= faster at runtime
= type mismatch detected early
® cons:
» often need to be explicit with the type

= making procedures generic may be
difficult

= potentially slower compilation

C++:

int add(int x, int y) {

return X + vy;

}
Rust:
fn add(x:
X + VY
}

r

Y.



Type checking: static vs. dynamic

Note: some languages are smart and you don't have to always specity types (e.g., OCaml, Rust)
Rust:

let x : 132 = 7;
let y = 3;
let z X * vy,



Various programming paradigms

e Imperative
e Functional
e Objective

e Declarative / programming in logic



X

Memory management: manual vs. garbage collection

Manual: Garbage collection:
e Need to ask for memory and return it, more e Memory freed automatically
explicitly ® pros:

® pros: = less work for the programmer
= more efficient = more difficult to make mistakes
= better in real-time applications e CONS:

® CONS: = less efficient
= more work for the programmer = can lead to sudden slowdowns

= more prone to errors




Memory management: manual vs. garbage collection

Manual: Garbage collection:
e Need to ask for memory and return it, more e Memory freed automatically
explicitly ® pros:

® pros: = less work for the programmer
= more efficient = more difficult to make mistakes
= better in real-time applications e CONS:

® CONS: = less efficient
= more work for the programmer = can lead to sudden slowdowns

= more prone to errors

Rust has many features to avoid memory management errors

a4




Rust

high—level
compiled
static type checking

manual memory management



Most important difference between Python and Rust?
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Braces, { }, for code formatting!
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Braces, { }, for code formatting!

e How do we denote blocks of code? fn hi() {

println!("Hello!");

= Python: indentation orintln! ("How are you?"):

= Rust: {...} }



Most important difference between Python and Rust?

Braces, { }, for code formatting!

e How do we denote blocks of code? fn hi() {

println!("Hello!");

= Python: indentation orintln! ("How are you?"):

= Rust: {...} }

e Don't be afraid of braces!!! You'll encounter them in C, C++, Java, Javascript, PHP, Rust, ...




Discussion section today

Git / Github demo
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