DS-210: Programming for Data Science

Lecture 14: Overview of programming languages.

?78 ¢



Comment on Homework 4, Questions 3 & 4



X

Various levels

e Native code

e Assembler

= pros: as fine control as in native code

= cons: not portable




X

Various levels

e Native code

e Assembler

= pros: as fine control as in native code

= cons: not portable

e High level

m various levels of closeness to the

architecture: from C to Prolog

= efficiency:

varies

could optimize better

very portable

easier to build large projects

some languages are resource—

efficient



X

Interpreted vs. compiled

Interpreted:

e An application (interpreter) reads commands

one by one and executes them.
e One step process to run an application:

= python hello.py




Interpreted vs. compiled

Interpreted:

e An application (interpreter) reads commands

one by one and executes them.
e One step process to run an application:

= python hello.py

("Fully") Compiled:

e Translated to native code by compiler

e Usually more efficient

e Two steps to execute:
1. Compile (Rust: rustc hello.rs)
2. Run (Rust: ./hello)

Compiled to intermediate format:

e Example: Java
s Portable intermediate format

= Needs another application, Java
virtual machine, that knows how to

interpret it



Type checking: static vs. dynamic

In [1]: def add(x,y):
Dynamic (e.g., Python): return x + y
print(add(2,2))

print(add("a","b"))

e checks if an object can be used for specific PEEBERG T

. . . a4
operation during runtime ab
® PrOS: L
. TypeError Traceback (mos
= don't have to specity the type of t recent call last)
<ipython-input-1-fcOed4de2672> in
object 4 print(add(2,2))

5 print(add("a","b"))
. ----> 6 print(add(2,"b"))
= procedures can work for various

<ipython-input-1-fc@ed4de2672> in (X, y)

t es 1 def add(x,y):
yp —-e-> 2 return x + vy
. . 3
= faster or no compilation 4 print(add(2,2))

5 print(add("a","b"))
® CONs:

TypeError: unsupported operand type(s) for +: 'int' and
'str'

s slower at runtime

= problems are detected late




Type checking: static vs. dynamic
Static (e.g, C++, Rust, OCaml, Java):

e checks if types of objects are as desired
® pros:
= faster at runtime
= type mismatch detected early
® cons:
» often need to be explicit with the type

= making procedures generic may be
difficult

= potentially slower compilation




Type checking: static vs. dynamic
Static (e.g, C++, Rust, OCaml, Java):

e checks if types of objects are as desired
® pros:
= faster at runtime
= type mismatch detected early
® cons:
» often need to be explicit with the type

= making procedures generic may be
difficult

= potentially slower compilation

C++:

int add(int x, int y) {

return X + vy;

}
Rust:
fn add(x:
X + VY
}

r

Y.



Type checking: static vs. dynamic

Note: some languages are smart and you don't have to always specity types (e.g., OCaml, Rust)
Rust:

let x : 132 = 7;
let y = 3;
let z X * vy,



Various programming paradigms

e Imperative
e Functional
e Objective

e Declarative / programming in logic



X

Memory management: manual vs. garbage collection

Manual: Garbage collection:
e Need to ask for memory and return it, more e Memory freed automatically
explicitly ® pros:

® pros: = less work for the programmer
= more efficient = more difficult to make mistakes
= better in real-time applications e CONS:

® CONS: = less efficient
= more work for the programmer = can lead to sudden slowdowns

= more prone to errors




Memory management: manual vs. garbage collection

Manual: Garbage collection:
e Need to ask for memory and return it, more e Memory freed automatically
explicitly ® pros:

® pros: = less work for the programmer
= more efficient = more difficult to make mistakes
= better in real-time applications e CONS:

® CONS: = less efficient
= more work for the programmer = can lead to sudden slowdowns

= more prone to errors

Rust has many features to avoid memory management errors

a4




Rust

high—level
compiled
static type checking

manual memory management



Most important difference between Python and Rust?

?78 ¢



Most important difference between Python and Rust?

Braces, { }, for code formatting!



Most important difference between Python and Rust?

Braces, { }, for code formatting!

e How do we denote blocks of code? fn hi() {

println!("Hello!");

= Python: indentation orintln! ("How are you?"):

= Rust: {...} }



Most important difference between Python and Rust?

Braces, { }, for code formatting!

e How do we denote blocks of code? fn hi() {

println!("Hello!");

= Python: indentation orintln! ("How are you?"):

= Rust: {...} }

e Don't be afraid of braces!!! You'll encounter them in C, C++, Java, Javascript, PHP, Rust, ...




Discussion section today

Git / Github demo

?78 ¢



