DS-210: PROGRAMMING FOR DATA SCIENGE
LECTURE 15
RUST: COMPILING. BASIC TYPES AND VARIABLES. PROJECT MANAGER (cargo).

REMINDER: MIDTERM IS ON MONDAY

e Same time as always

e Arrive early or ontime

REMINDER: MIDTERM IS ON MONDAY

e Same time as always

e Arrive early or ontime

FINAL PROJECT DISCUSSION

WRITE AND COMPILE SIMPLE RUST PROGRAM

let X 9;

let vy 16;

println!("Hello, snow!");

println! ("{} plus {} is {}", X, Yy, X+Y);

fn main() {

A few facts:

e function maln:the code thatis executed
e println! isamacro:
= first parameter is a format string
= {} arereplaced by the following

parameters

WRITE AND COMPILE SIMPLE RUST PROGRAM

let x = 9;
let y = 16;
println!("Hello, snow!");

fn main() {

println! ("{} plus {} is {}", X, Yy, X+Yy);

A few facts: Simplest way to compile:

e function main:the code that is executed
e println! isamacro:
= first parameter is a format string

= {} arereplaced by the following
parameters

e put the contentinfile hello. rs
e command line:

= pavigate to this folder
= rustc hello.rs

= run ./hello or hello.exe

VARIABLE DEFINITIONS

) In []: let x = 3;
e By default immutable! X =X + 1; // <= error here

VARIABLE DEFINITIONS

e By default immutable!

In [2]:

let x = 3;
X =X+1; // <== error here

let x = 3;
~ first assignment to "x°
X =X+ 1; // <== error here

nanansnns cannot assign twice to immutable variable
cannot assign twice to immutable variable “x°

help: consider making this binding mutable

mut x

VARIABLE DEFINITIONS

e By default immutable!

e Use mut to make them mutable

In [2]:

In [3]:

Out[3]:

let x = 3;
X=X+1; // <== error here

let x = 3;
~ first assignment to "x

X =X+ 1; // <== error here

nananssns cannot assign twice to immutable variable
cannot assign twice to immutable variable "x°
help: consider making this binding mutable

mut x

// mutable variable
let mut x = 3;
X=X+ 1;

X

4

VARIABLE DEFINITIONS

e By default immutable!

e Use mut to make them mutable

e Variable shadowing: new variable with the
same hame

In [2]:

In [3]:

Out[3]:

In [4]:

let x = 3;
X =X+ 1; // <== error here

let x = 3;
~ first assignment to x°
X =X+ 1; // <== error here
nanananns cannot assign twice to immutable variable
cannot assign twice to immutable variable “x°

help: consider making this binding mutable

mut x

// mutable variable
let mut x = 3;

X =X + 1;

X

4

let solution = "4":

let solution : 132 = solution.parsel()
.expect("Not a number!");

let solution = solution * (solution - 1) / 2;

println!("solution = {}",solution);

solution = 6

X
BASIC TYPES: INTEGERS AND FLOATS

e unsigned integers: u8, ul6, u32, ub4, ul28, usize (architecture specific size)
» fromQto2" — 1

e signed integers: 18, 116, 132 (default), 164, 1128, isize (architecture specific size)
= from—2""1to2" ! — 1

(if you need to convert, use the as operator)

BASIC TYPES: INTEGERS AND FLOATS

e unsigned integers: u8, ul6, u32, ue4, ul28, usize (architecture specific size)
» fromQto2" — 1

e signed integers: 18, 116, 132 (default), 164, 1128, isize (architecture specific size)
= from=2""1to2" 1 — 1

(if you need to convert, use the as operator)

In [5]: let x : = 13;
let vy : = -17;
// won't work without the conversion
(x as) *y

Out[5]: -221

BASIC TYPES: INTEGERS AND FLOATS

e unsigned integers: u8, ul6, u32, ue4, ul28, usize (architecture specific size)
» fromQto2" — 1

e signed integers: 18, 116, 132 (default), 164, 1128, isize (architecture specific size)
= from=2""1to2" 1 — 1

(if you need to convert, use the as operator)

In [5]: let x : i16 = 13;
let y : 132 = -17;
// won't work without the conversion
(x as 132) * vy

Out[5]: -221

e floats: f32 and 64 (default)

In [6]: let x = 4;
let z = 1.25; // default float type: f64
// won't work without the conversion
(x as f64) * z

Out[6]: 5.6

X

BASIC TYPES: BOOLEANS, CHARACTERS, AND STRINGS

e bool usesone byte of memory

In [7]: 1let x = true;
let y: bool = false;

// x and (not y)
x && ly

Qut[7]: true

BASIC TYPES: BOOLEANS, CHARACTERS, AND STRINGS

e bool usesone byte of memory

In [7]: 1let x = true;
let y: bool = false;

// x and (not y)
x && ly

Qut[7]: true

e char defined viasingle quote, uses four bytes of memory (Unicode scalar value)

In [8]: 1let x = 'a’';
lety = '8"';
let z = 'R';

BASIC TYPES: BOOLEANS, CHARACTERS, AND STRINGS

e bool usesone byte of memory

In [7]: 1let x = true;
let y: bool = false;

// x and (not y)
x && ly

Qut[7]: true

e char defined viasingle quote, uses four bytes of memory (Unicode scalar value)
In [8]: 1let x = 'a’';
lety = '8"';
let z = 'R';

e string slice defined via double quotes (hot so basic actually!)

In [9]: 1let s1 = "Hello! How are you, m?";
let s2 : &str = "Zazdétc gesly jazn.";

PROJECT MANAGER: cargo

e create aproject: cargo new PROJECT-NAME
e main file willbe PROJECT-NAME/src/maln.rs

PROJECT MANAGER: cargo

e create aproject: cargo new PROJECT-NAME
e main file willbe PROJECT-NAME/src/maln.rs

e torun: cargo run
e tojust build: cargo build

X
PROJECT MANAGER: cargo

e create aproject: cargo new PROJECT-NAME
e main file willbe PROJECT-NAME/src/maln.rs

e torun: cargo run
e tojust build: cargo build

Add - -release tocreate a "fully optimized" version:

e longer compilation

e faster execution

e some runtime checks not included (e.g., integer overflow)
e debuging information not included

e the executable in a different folder

PROJECT MANAGER: cargo

If you just want to check if your current version compiles: cargo check

e Much faster for big projects

