DS-210: PROGRAMMING FOR DATA SCIENGE
LECTURE 17
RUST: FLOW CONTROL (CONTINUED). ALGEBRAIC DATA TYPES (TUPLES AND ENUMS).

POSTPONE THE PROJECT PROPOSAL DATE?

L00PS: while

while condition {
// DO SOMETHING HERE

}

L00PS: while

while condition {
// DO SOMETHING HERE

}

In [2]: /7 find largest integer x s.t. x * x < 250
let mut x = 1;
while (x+1) * (x+1) < 250 {
X += 1;
}

X

Out[2]: 15

INFINITE LOOP: Loop

loop {
// DO SOMETHING HERE

}

Need to use break to jump out of the loop!

In [3]: let mut x = 1;
Loop {
if (x + 1) * (x + 1) >= 250 {break;}
X += 1;
}

X

Out[3]: 15

INFINITE LOOP: Loop

loop {
// DO SOMETHING HERE
}

Need to use break to jump out of the loop!

In [3]: let mut x = 1;

loop { e Loop can return a value!
if (x + 1) * (x + 1) >= 250 {break;} .
oo 1; e break can act like return
X
In [4]: let mut x = 1;
Out[3]: 15 let x = loop {
if x * x >= 250 {break x - 1;}
X += 1;
}i

Out[4]: 15

break AND continue

e work in all loops
e break: terminate the execution
= can return a value in Loop
e contlinue: terminate this iteration and
jump to the next one
= in while, the condition will be
checked
= in for, there may be no next
iteration

break AND continue

e work in all loops
e break: terminate the execution
= can return a value in Loop
e contlinue: terminate this iteration and
jump to the next one
= in while, the condition will be
checked
= in for, there may be no next
iteration

In [5]:

for 1 in 1..=10 {

};

3
6
9

if i %$ 3 !'= 0 {continue;}
println!("{}",1);

break AND continue

In [5]: for i in 1..=10 {

e work in all loops if i % 3 != 0 {continue;}
println!("{}",1);

e break: terminate the execution };
= can return a value in Loop

w o w

e continue: terminate this iteration and

jump to the next one ,
J P break and continue can use labels

= INn whille, the condition will be

CheCKEd In [6]: 'outer loop: loop {
. loop {
= N for, there May be no next break 'outer loop;
. . }
Iteration HE
println! ("Managed to escape! :-)");

Managed to escape! :-)

(X
break AND continue

In [5]: for i in 1..=10 {
|

e work in all loops if i % 3 != 0 {continue;}
println!("{}",1);

e break: terminate the execution };
= can return a value in Loop :
9

e continue: terminate this iteration and

jump to the next one ,
, _ N | break and continue can use labels
= INn whille, the condition will be

checked In [6]: 'outer loop: loop {
= in for, there may be no next R ‘outer_loop;
iteration }; }
println! ("Managed to escape! :-)");
Managed to escape! :-)

In [7]: let x = 'outer loop: loop {
loop { break 'outer loop 1234;}
}i
printin! ("{}",x);

1234

TUPLES

e Syntax: (value 1,value 2,value 3)
e Type: (type 1,type 2,type 3)

In [8]: 1let mut tuple = (1,1.1);
let another = ("abc","def","ghi");

let yet another: (u8,u32) = (255,4 000 000 000);

TUPLES

In [8]: 1let mut tuple = (1,1.1);
e Syntax: (value 1,value 2,value 3)

e Type: (type 1,type 2,type 3)

let another = ("abc","def","ghi");

let yet another: (u8,u32) = (255,4 000 000 000);

: g In [9]: println!("({}, {})",tuple.o,tuple.l);
Accessing elements via index (0 based): S uple.0,tuple

println!("({}, {})",tuple.O,tuple.l);

(1, 1.1)
(2, 1.1)

TUPLES

e Syntax: (value 1,value 2,value 3)
e Type: (type 1,type 2,type 3)

Accessing elements via index (0 based):

Accessing via matching:

In [8]:

In [9]:

In [10]:

let mut tuple = (1,1.1);

'Let anDthE‘r f— {”abc",”def","ghi"};

let yet another: (us8,u32)

printin! (" ({}, {})", tuple.
tuple.0 = 2;
printiln! (" ({}, {})",tuple.

(1, 1.1)
(2, 1.1)

¢]

¢]

(255,4 000 000 000);

,tuple.1);

,tuple.1);

let (integer,float) = tuple;
println!("({},{})",integer,float);

(2,1.1)

ENUMS

e Data type allowing for capturing a small set of options

In [11]: enum Direction {
North,
East,
South,
West,

}

let dir = Direction: :North;
let dir 2: Direction = Direction::South;

ENUMS

e Data type allowing for capturing a small set of options

In [11]: enum Direction { In [12]: // Avoiding specifying "Direction::"
North, use Direction::East;
East, let dir 3 = East;
South,
West,
}

let dir = Direction: :North;
let dir 2: Direction = Direction::South;

ENUMS

e Data type allowing for capturing a small set of options

In [11]: enum Direction { In [12]: // Avoiding specifying "Direction::"
North, use Direction::East;
East, let dir 3 = East;
South,
West, L . :
} In [13]: // Bringing two options into the current scope

use Direction::{East,West};

let dir = Direction::North; let dir_3 = West;

let dir 2: Direction = Direction::South;

ENUMS

e Data type allowing for capturing a small set of options

In [11]: enum Direction { In [12]: // Avoiding specifying "Direction::"
North, use Direction::East;
East, let dir 3 = East;
South,
West, L . :
} In [13]: // Bringing two options into the current scope

use Direction::{East,West};

let dir = Direction::North; let dir_3 = West;

let dir 2: Direction = Direction::South;

In [14]: // Bringing all options in
use Direction::*;
let dir 4 = South;

ENUMS: PATTERN MATCHING VIA match

In [15]: // print the direction
match dir {

1

// 1f things not in scope,

// have to use "Direction::"
Direction::North => println!("N"),
// but they are, so we don't have to
South => println! ("S"),

West => println!("wW"),

East => println!("E"),

l

ENUMS: PATTERN MATCHING VIA match

In [15]: s/ print the direction
match dir {

1;

// 1f things not in scope,

// have to use "Direction::"
Direction::North => println!("N"),
// but they are, so we don't have to
South => println! ("S"),

West => println!("wW"),

East => println!("E"),

In [16]:

// won't work

match dir 2 {
North => println!("N"),
South => println! ("S"),
// East and West not covered

1

match dir 2 {

~onnn patterns East and West™ not covered
non-exhaustive patterns: "East™ and "West not covered
help: ensure that all possible cases are being handled,
possibly by adding wildcards or more match arms

3

ENUMS: PATTERN MATCHING VIA match

In [15]: // print the direction
match dir {
// 1f things not in scope,
// have to use "Direction::"
Direction::North => println!("N"),
// but they are, so we don't have to
South => println! ("S"),
West => println!("wW"),
East => println!("E"),

In [17]: match dir 2 {
North => println! ("N"

)
South => println!("S")

F

// match anything left
_ =),
}i

In [16]:

// won't work

match dir 2 {
North => println!("N"),
South => println! ("S"),
// East and West not covered

1

match dir 2 {

~annn patterns East and West™ not covered
non-exhaustive patterns: "East™ and "West not covered
help: ensure that all possible cases are being handled,
possibly by adding wildcards or more match arms

3

ENUMS: PATTERN MATCHING VIA match

In [15]: // print the direction
match dir {
// 1f things not in scope,
// have to use "Direction::"
Direction::North => println!("N"),
// but they are, so we don't have to
South => println! ("S"),
West => println!("wW"),
East => println!("E"),

In [17]: match dir 2 {
North => println! ("N"

)
South => println!("S")

F

// match anything left
_ =),
}i

In [16]:

// won't work

match dir 2 {
North => println!("N"),
South => println! ("S"),
// East and West not covered

1

match dir 2 {

~annn patterns East and West™ not covered
non-exhaustive patterns: "East™ and "West not covered
help: ensure that all possible cases are being handled,
possibly by adding wildcards or more match arms

In [18]: match dir 2 {

_ = (),

// will never get here!!

North => println!("N"),

South => println!("S"),
&

DISPLAYING ENUMS

By default Rust doesn't know how to display it

In [20]: println!("{}",dir);

printin! ("{}",dir);

~~~ "Direction cannot be formatted with
the default formatter
"Direction’ doesn't implement “std::fmt::Display’
help: the trait “std::fmt::Display  1is not implemented
for "Direction’



DISPLAYING ENUMS

By default Rust doesn't know how to display it

In [21]: println!("{:?}",dir);

printin! ("{:?}",dir);

~~2 "Direction cannot be formatted usi
ng {:7}
"Direction’ doesn't implement "Debug’
help: the trait "Debug’ is not implemented for "Directi
on



DISPLAYING ENUMS

By default Rust doesn't know how to display it

In [21]: println!("{:?}",dir);

println!("{:?}",dir);

~~% "Direction’ cannot be formatted usi
ng {:?}
"Direction’ doesn't implement "Debug’
help: the trait "Debug’ is not implemented for ‘Directi
on

In [22]:

dir

"Direction”® cannot be formatted using "{:?}°
"Direction” doesn't implement "Debug’

help: the trait "Debug’ is not implemented for "Directi
on’



DISPLAYING ENUMS

By default Rust doesn't know how to display it

In [21]: println!("{:?}",dir); In [22]:
println! ("{:?}",dir); dir
A~ "Direction’ cannot be formatted usi
nge {:7} ) . ) i ‘Direction” cannot be formatted using "{:?7}"
Direction doesn't implement Debug o _ ‘Direction” doesn't implement “Debug’
he}p: the trait Debug is not implemented for Directi help: the trait ‘Debug’ is not implemented for "Directi
on on"

In [23]: #[derive(Debug)]
enum Direction {

North,

East,

South,

West,

}

use Direction::*;



DISPLAYING ENUMS

By default Rust doesn't know how to display it

In [21]: println!("{:?}",dir); In [22]:

println! ("{:?}",dir); dir
~~% "Direction’ cannot be formatted usi

ng {:?}

"Direction’ doesn't implement "Debug’

help: the trait "Debug’ is not implemented for ‘Directi

"Direction”® cannot be formatted using "{:?}°
"Direction” doesn't implement "Debug’
help: the trait "Debug’ is not implemented for "Directi

on on
In [23]: #[derive(Debug)] In [24]: dir
enum Direction {
North, out[24]: North
East,
South,
West,
}

use Direction::*;



DISPLAYING ENUMS

By default Rust doesn't know how to display it

In [21]: println!("{:?}",dir); In [22]:

println! ("{:?}",dir); dir
~~% "Direction’ cannot be formatted usi

ng {:?}

"Direction’ doesn't implement "Debug’

help: the trait "Debug’ is not implemented for ‘Directi

"Direction”® cannot be formatted using "{:?}°
"Direction” doesn't implement "Debug’
help: the trait "Debug’ is not implemented for "Directi

on on
In [23]: #[derive(Debug)] In [24]: dir

enum Direction {
North, Out[24]: North
East,
South, In [25]: println!("{:?}",dir);
West,

¥ North

use Direction::*;



match AS EXPRESSION

In [26]: // swap east and west
let dir 4 = West;
printin!("{:?}", dir 4);

let dir 4 = match dir 4 {
East => West,

West => {
println! ("Switching West to East");
East

}

// variable mathching anything else
other => other,

|
printin! ("{:?}", dir _4);

West

Switching West to East
East



ENUMS

e Each option can come with additional information

In [27]: enum DivisionResult {

Ook(u32),
DivisionByZero,
}
fn divide(x:u32, y:u32) -> DivisionResult {
if y == 0 {
DivisionResult::DivisionByZero
} else {

DivisionResult::0k(x / V)
}
1

let (a,b) = (9,3);
match divide(a,b) {
DivisionResult::0k(result)
=> println!("the result is {}",result),
DivisionResult::DivisionByZero
=> println! ("noooooo!!!!"),

1

the result is 3



ENUMS

e Each option can come with additional information

In [27]:

enum DivisionResult {

ok(u32),
DivisionByZero,
}
fn divide(x:u32, y:u32) -> DivisionResult {
if y == 0 {
DivisionResult::DivisionByZero
} else {

DivisionResult::0k(x / y)
}
}

let (a,b) = (9,3);
match divide(a,b) {
DivisionResult::0k(result)
=> println!("the result is {}",result),
DivisionResult::DivisionByZero
=> println!("noooooo!!!!"),

1;

the result is 3

In [28]:

enum DivisionResult {
Ok(u32,u32),

DivisionByZero,
¥
fn divide(x:u32, y:u32) -> DivisionResult {
if y == 0 {
DivisionResult::DivisionByZero
} else {

DivisionResult::0k(x / vy, X % V)
}
}

let (a,b) = (9,3);
match divide(a,b) {
DivisionResult::0k(result, reminder) => {
println!("the result is {}",result);
println!("the reminder is {}", reminder);
}
DivisionResult::DivisionByZero
=> println!("noooooo!!!!"),

1;

the result is 3
the reminder 1is @



SIMPLIFIED MATCHING 1T let

Consider the following example (in which we want to use just one branch):

In [29]: match divide(8,4) {
DivisionResult::0k(result, reminder) => println!("{} (reminder {})",result, reminder),
_=> (), // <--- how to avoid this?

1;

2 (reminder 0)



SIMPLIFIED MATCHING 1L et

Consider the following example (in which we want to use just one branch):

In [29]: match divide(8,4) {
DivisionResult::0k(result,reminder) => println!("{} (reminder {})",result, reminder),
_=> (), // <--- how to avoid this?

1;

2 (reminder 0)

if let allows for matching just one branch

In [30]: if let DivisionResult::0k(result, reminder) = divide(8,7) {
println! ("{} (reminder {})",result,reminder);

1

1 (reminder 1)




SIMPLIFIED MATCHING 1. 1let

Consider the following example (in which we want to use just one branch):

In [29]: match divide(8,4) {
DivisionResult::0k(result, reminder) => println!("{} (reminder {})",result, reminder),
_=> (), // <--- how to avoid this?

1

2 (reminder 0)

if let allows for matching just one branch

In [30]: if let DivisionResult::0k(result, reminder) = divide(8,7) {
println!("{} (reminder {})",result,reminder);

};
1 (reminder 1)

In [31]: 1let dir = North;
if let North = dir {
println! ("North");

1

North




SIMPLIFIED MATCHING 1. 1let

Consider the following example (in which we want to use just one branch):

In [29]: match divide(8,4) {
DivisionResult::0k(result, reminder) => println!("{} (reminder {})",result, reminder),
_=> (), // <--- how to avoid this?

1

2 (reminder 0)

if let allows for matching just one branch

In [30]: if let DivisionResult::0k(result, reminder) = divide(8,7) {
println!("{} (reminder {})",result,reminder);

1

1 (reminder 1)

In [31]: 1let dir = North; In [32]: if let North = dir {
if let North = dir { println! ("North");
println! ("North"); } else {
t; println! ("Something else");
}i
North
North



ALGEBRAIC DATA TYPES

Algebraic operations on types:

e product (X) = tuples
e disjoint union (W) = enums

((u32 X £32 X bool) W (bool X u8)) X u32 v O




ALGEBRAIC DATA TYPES

Algebraic operations on types:

e product (X) = tuples
e disjoint union (W) = enums

((u32 X £32 X bool) W (bool X u8)) X u32 v O

e Inspired by functional programming languages
e Explicitly supported in Rust, ML, OCaml, Haskell, Schema, TypeScript, ...




ALGEBRAIC DATA TYPES WITH RECURSION

e Could be very useful for expressing
some concepts!
e |dealized not working example of a list

enum List {
Element ( ,List),
End,

}

e Easier in pure functional languages,
but can be implemented in Rust too




ALGEBRAIC DATA TYPES WITH RECURSION

e Could be very useful for expressing
some concepts!
e |dealized not working example of a list

enum List {
Element(132,L1ist),
End,

}

e Easier in pure functional languages,
but can be implemented in Rust too

In [33]:

// actual recursive list in Rust
// you don't have to understand it at this point
enum List {

Element(1227,Box<List>),

End,

}

let mut list = List::End;

for t in [3,2,5,1,13,15].1iter().rev() {
list = List::Element(*t,Box::new(list));

}

fn show(list: &List) {
let mut list = list;
loop {
match &list {
List::End => break,
List::Element(x,1l) => {
print!("{} ",x);
list = &*1;

}

}
println!();

}

show(&list);

325113 15



NEXT TIME: THINGS WILL GET REAL

MEMORY MANAGEMENT IN GENERAL AND IN RUST



