DS-210: PROGRAMMING FOR DATA SCIENCE
LECTURE 18
1. STRUGTS
2. MEMORY MANAGEMENT: STACK AND HEAP

STRUCTS

Last time: tuples, e.q., (12, 1.7, true)

Structs compared to tuples:
 Similar: can hold a few items of different types
e Different: the items have names

STRUCTS

Last time: tuples, e.q., (12, 1.7, true)

Structs compared to tuples:
 Similar: can hold a few items of different types
e Different: the items have names

In [2]: s/ Definition: list items (called fields)
// and their types

struct Person {
name: String,
year born:
time 100m:
likes ice cream:

STRUCTS

Last time: tuples, e.q., (12, 1.7, true)

Structs compared to tuples:
 Similar: can hold a few items of different types
e Different: the items have names

In [2]: s/ Definition: list items (called fields)
// and their types

struct Person {
name: String,
year born: ulg,
time 100m: 764,
likes ice cream: bool,

In [3]:

// Instantiation:

replace types with values

let mut cartoon character = Person {

name: String::

from("Tasmanian Devil"),

year born: 1954,
time 100m: 7.52,
likes ice cream: true,

STRUCTS

Last time: tuples, e.q., (12, 1.7, true)

Structs compared to tuples:
 Similar: can hold a few items of different types
e Different: the items have names

In [2]: s/ Definition: list items (called fields) In [3]: s/ Instantiation: replace types with values
// and their types
let mut cartoon character = Person {
struct Person { name: String::from("Tasmanian Devil"),
name: String, year born: 1954,
year born: ulg, time 100m: 7.52,
time 100m: 764, likes ice cream: true,
likes ice cream: bool, e
¥

In [4]: // Accessing fields: use ".field name"

println!("{} was born in {}",

cartoon character.name,

cartoon character.year born);
cartoon character.year born = 2022;
println!("{} was born in {}",

cartoon character.name,

cartoon character.year born);

Tasmanian Devil was born in 1954
Tasmanian Devil was born in 2022

STRUCTS

Last time: tuples, e.q., (12, 1.7, true)

Structs compared to tuples:
 Similar: can hold a few items of different types
e Different: the items have names

In [2]:

In [4]:

// Definition: list items (called fields) In [3]:
// and their types

struct Person {
name: String,

year born:)
time 100m: ,
likes ice cream: ,

// Accessing fields: use ".field name"
println!("{} was born in {}",

cartoon character.name,

cartoon character.year born);
cartoon character.year born = 2022;
println!("{} was born in {}",

cartoon character.name,

cartoon character.year born);

Tasmanian Devil was born in 1954
Tasmanian Devil was born in 2022

// Instantiation: replace types with values

let mut cartoon character = Person {
name: String::from("Tasmanian Devil"),
year born: 1954,
time 100m: 7.52,
likes ice cream: true,

Structs vs tuples:
Which are better?

TUPLE STRUCTS

Named tuples to impose more meaning and delineate a different type.

Example: both (f64,f64,f64)

e box size (e.g., 8.5iIn X 11 in X 6 in)
e Euclidean coordinates of a point in 3D

TUPLE STRUCTS

Named tuples to impose more meaning and delineate a different type.

Example: both (f64,f64,f64)

e box size (e.q., 85iInX 11in X 6in)
e Euclidean coordinates of a point in 3D

In [5]: struct BoxSize(, ,);
struct Point() ,)

TUPLE STRUCTS

Named tuples to impose more meaning and delineate a different type.

Example: both (f64,f64,f64)

e box size (e.q., 85iInX 11in X 6in)
e Euclidean coordinates of a point in 3D

In [5]: struct BoxSize(, .) ; In [6]: let mut my box = BoxSize(3.2,6.0,2.0);
struct Point(, ,) let mut p : Point = Point(-1.3,2.1,0.0);

X
TUPLE STRUCTS

Named tuples to impose more meaning and delineate a different type.

Example: both (f64,f64,f64)

e box size (e.g., 8.5iIn X 11 in X 6 in)
e Euclidean coordinates of a point in 3D

In [5]: struct BoxSize(f64,f64,T64); In [6]: let mut my box = BoxSize(3.2,6.0,2.0);
struct Point(f64,f64,f64); let mut p : Point = Point(-1.3,2.1,0.0);

In [7]: // won't work
my box = p;

// Impossible to accidentally confuse different
// types of triples.
// No runtime penalty! Verified at compilation.

my box = p;

~ expected struct BoxSize , found struct Poil
nt"
mismatched types

X

TUPLE STRUCTS

Named tuples to impose more meaning and delineate a different type.

Example: both (f64,f64,f64)

e box size (e.g., 8.5iIn X 11 in X 6 in)
e Euclidean coordinates of a point in 3D

In [5]:

In [7]:

struct BoxSize(f64,f64,764);
struct Point(f64,f64,164);

J/ won't work
my box = p;

// Impossible to accidentally confuse different

// types of triples.

// No runtime penalty! Verified at compilation.

my box = p;

~ expected struct "BoxSize ,
nt"
mismatched types

found struct

"Poil

In [6]:

In [8]:

let mut my box = BoxSize(3.2,6.0,2.0);
let mut p : Point = Point(-1.3,2.1,0.0);

// Acessing via index

printin! ("{} {} {}",p.0,p.1,p.2);
p.0 = 17.2;

// Destructuring
Llet Point(first,second,third) = p;
println!("{} {} {}", first, second, third);

1.3 2.1 0
17.2 2.1 0O

NAMED STRUCTS IN ENUMS

Structs with braces and exchangable with tuples in many places

In [9]: enum LPSolution {
None,
Point{x:f64,y:T64}

}

let example = LPSolution::Point{x:1.2, y:4.2};

NAMED STRUCTS IN ENUMS

Structs with braces and exchangable with tuples in many places

In [9]: enum LPSolution { In [10]: if let LPSolution::Point{x:first,y:second} = example {
None, println!("coordinates: {} {}", first, second);
Point{x:f64,y: 764} }i

}

coordinates: 1.2 4.2
let example = LPSolution::Point{x:1.2, y:4.2};

MEMORY MANAGEMENT: STACK VS. HEAP

e Two different places where space for data can be allocated
e We will discuss them one by one

X

STACK

FILO (first in last out) memory
allocation
Stores current local variables and
additional information such as:

= function arguments

= function output

= wWhere to continue when a

function terminates

Fast memory allocation
Usually small fraction of the memory
Often: size of the allocated memory
has to be known in advance
(compilation time)

X

STACK

FILO (first in last out) memory
allocation
Stores current local variables and
additional information such as:

= function arguments

= function output

= wWhere to continue when a

function terminates

Fast memory allocation
Usually small fraction of the memory
Often: size of the allocated memory
has to be known in advance
(compilation time)

Almost everything you saw so far allocated
on stack

e Exception: data in String allocated on
heap

X

STACK EXAMPLE (IDEALIZED)

In [11]:

fn main() {

let mut x =
let mut y = §8;
println!("x = {}, v = {}",X,y);

x = add or subtract(x,y,true); // x = x + y
y = add or subtract(x,y,false); // y =x - y
X = add or subtract(x,y,false); // x = x - y
println!("x = {}, v = {}",X,¥);

I o w

}

fn add or subtract(x:132, y:132, add:bool) -> 132 {
let second arg = if add {y} else {negate(y)};
X + second arg

}

fn negate(x:132) -> 132 {
- X

}

main() ;

X 3,V 8

Xx=8, vy 3

X

STACK EXAMPLE (IDEALIZED)

In [11]: fn main() {

let mut x
let mut y
println! (" {}, y={1",x,y);

x = add or subtract(x,y,true); // x = x + y
y = add or subtract(x,y,false); // y =Xx -y
X = add or subtract(x,y,false); // x = x - y
println!("x = {}, y = {}",x,¥);

3;
8;

> N

}

fn add or subtract(x:132, y:132, add:bool) -> 132 {
let second arg = if add {y} else {negate(y)};
X + second arg

}

fn negate(x:i32) -> 132 {
- X

}

main();

X=3,y=28

x=8,y=3

STEP1: CALL main

e X and y allocated on stack and
Initiated
e Stack: main (X, y)

X

STACK EXAMPLE (IDEALIZED)

In [11]: fn main() {
let mut x = 3;
let mut y = §8;

println!("x = {}, v = {}".,x,y¥);

x = add or subtract(x,y,true); // x = x + y

y = add or subtract(x,y,false); //
X = add or subtract(x,y,false); //

println!("x = {}, yv = {}".,x,y);

}

fn add or subtract(x: , Y

- Y

STEP 1: CALL main
- e X and y allocated on stack and
initiated
. e Stack: main (X, y)

let second arg = if add {y} else {negate(y)};

X + second arg

}

fn negate(x:) -> {
- X

}

main() ;

= X
nu
o W
< <
i u
W o

STEP 2: CALL add_or_subtract (ISTTIME)

e arguments for add or subtract put
on stack

e space for solution allocated on stack

e space for second arg allocated as well

e Stack: main (X, y), add or subtract
(all the above + auxiliary information)

X
STACK EXAMPLE (IDEALIZED)

In []: fn main() {
let mut x = 3;
tet mut y = 5 STEP3: add_or_subtract TERMINATES
println!("x = {}, v = {}",X,¥); — —
X = add or subtract(x,y,true);

y = add_or_subtract(x,y, false); e process and remove all information
X = add or subtract(x,y,false);
Printinl (™ = {}, y = 4}".x.¥); about the call

}

fn add or subtract(x:132, y:132, add:bool) -> 132 { ¢ StaCk: maln (Xr y)

let second arg = if add {y} else {negate(y)};
X + second arg

}

fn negate(x:i32) -> 132 {
- X

}

main() ;

X
STACK EXAMPLE (IDEALIZED)

In [1: fn main() {
let mut x = 3;
let mut y = §8;
println!("x = {}, vy = {}".,X,¥);
X = add or subtract(x,y,true);
y = add or subtract(x,y,false);
X = add or subtract(x,y,false);
println!("x = {}, y = {}",x,y);
}

fn add or subtract(x: , Y , add:) ->
let second arg = if add {y} else {negate(y)};
X + second arg

}

fn negate(x:) -> {
- X

}

main() ;

{

STEP3: add_or_subtract TERMINATES

e process and remove all information
about the call
e Stack: main (X, y)

STEP 4:CALL add _or_subtract (2ND TIME)

e arguments for add or subtract put
on stack

e space for solution allocated on stack

e space for second arg allocated as well

e Stack: main (X, y), add or subtract
(all the above + auxiliary information)

X

STACK EXAMPLE (IDEALIZED)

In [1: fn main() {

}

fn add or subtract(x:132, y:132, add:bool) -> 132 {
let second arg = if add {y} else {negate(y)};
X + second arg

}

fn negate(x:132) -> 132 {
- X

}

main() ;

let mut x = 3;
let mut y = §8;

println!("x = {}, v = {}".,x,y¥);

x = add or subtract(x,y,true);

y = add_or_subtract(x,y,false);
x = add _or subtract(x,y,false);

println!("x = {}, yv = {}".,x,y);

STEP 5: CALL negate (1STTIME)

e the argument for negate put on stack

e space for solution allocated on stack

e Stack: main (x, y), add or subtract
(...), negate (all of the above +
auxiliary information)

X
STACK EXAMPLE (IDEALIZED)

In [1: fn main() {
let mut x = 3;
let mut y = §8;
println!("x = {}, vy = {}".,X,¥);
X = add or subtract(x,y,true);
y = add or subtract(x,y,false);
X = add or subtract(x,y,false);
println!("x = {}, y = {}",x,y);
}

fn add or subtract(x: , Y , add:) ->
let second arg = if add {y} else {negate(y)};
X + second arg

}

fn negate(x:) -> {
- X

}

main() ;

{

STEP 5: CALL negate (1STTIME)

e the argument for negate put on stack

e space for solution allocated on stack

e Stack: main (x, y), add or subtract
(...), negate (all of the above +
auxiliary information)

STEP 6: negate TERMINATES

e process and remove all information
about the call

e Stack: main (x, y), add or subtract
(...)

X

STACK EXAMPLE (IDEALIZED)

In [1:

fn main() {
let mut x = 3;
let mut yv = 8;
println!("x = {}, y = {}".,x,y¥);
X = add or subtract(x,y,true);
y = add or subtract(x,y,false);
X = add or subtract(x,y,false);
println!("x = {}, y = {}".,X,¥);
}

fn add or subtract(x:132, y:132, add:bool) -> 132 {
let second arg = if add {y} else {negate(y)};
X + second arg

}
fn negate(x:132) -> 132 {

=X

}

main();

STEPT: add_or_subtract TERMINATES

e [...]
e Stack: main (x, y)

X

STACK EXAMPLE (IDEALIZED)

In [1:

fn main() {
let mut x = 3;
let mut yv = 8;
println!("x = {}, y = {}".,x,y¥);
X = add or subtract(x,y,true);
y = add or subtract(x,y,false);
X = add or subtract(x,y,false);

println!("x = {}, v = {}".,Xx,y);

}

fn add or subtract(x:132, y:132, add:bool) -> 132 {
let second arg = if add {y} else {negate(y)};
X + second arg

}

fn negate(x:132) -> 132 {
- X

}

main();

STEPT: add_or_subtract TERMINATES

e [...]
e Stack: main (x, y)

STEP 8: CALL add _or_subtract (3RDTIME)

o [...]
e Stack: main (x, y), add or subtract
(...)

X
STACK EXAMPLE (IDEALIZED)

In [1: fn main() {
let mut x = 3;
let mut yv = 8;
println!("x = {}, y = {}".,X,¥);

STEPT: add_or_subtract TERMINATES
X = add or subtract(x,y,true);

y = add_or subtract(x,y,false); o []
x = add or subtract(x,y,false); N

println!("x = {}, y = {}",x,y¥); e Stack: maln (X Y)
} (] !

fn add or subtract(x:132, y:132, add:bool) -> 132 {
let second arg = if add {y} else {negate(y)};

L R STEP8: CALL add_or_subtract (3RD TIME)

fn negate(x:132) -> 132 {

X o [...]
e Stack: main (x, y), add or subtract
(...)

}

main();

LIMITED SPACE ON STACK!

In [12]:
fn same number(x:u32) -> u32 {
match x {
0 => 0,
=> 1 + same number(x - 1),

}
}

LIMITED SPACE ON STACK!

In [12]:
fn same number(x:u32) -> u32 {
match x {
0 => 0,
_ => 1 + same number(x - 1),
}
¥

In [13]: same number(7)

Out[13]: 7

LIMITED SPACE ON STACK!

In [12]:

In [13]:

Out[13]:

In [14]:

Out[14]:

fn same number(x:u32) =-> u32 {
match x {
0 => 0,
=> 1 + same number(x - 1),

same_number(7)
7
same number (123 456)

123456

LIMITED SPACE ON STACK!

In [12]:
fn same number(x:u32) -> u32 {
match x {
0 => 0,
=> 1 + same number(x - 1),

In [13]: same number(7)
Qut[13]: 7

In [14]: same number(123 456)
Out[1l4]: 123456

In [15]: same number(l 000 000)

Child process terminated with status:

signal:

11 (core dumped)

X
USING TOO MUCH MEMORY ON STACK: STACA OVERFLOW

USING TOO MUCH MEMORY ON STACK: STACA OVERFLOW

This is where the name of the popular webpage for asking questions about programming
comes from!

T

(j O & https://stackoverflow.com/questions/8318911/why-does-html-think-cht B % =

= ctackoverflow Products | T ‘

Home Why does HTML think “chucknorris” is a

PUBLIC COlor?
® Questions | Asked 10 years, 3 months ago Modified 18 days ago Viewed 702k times
Tags

Why do certain random strings produce colors when entered as background
colors in HTML?

Users

COLLECTIVES 0 8353

For example, the following code produces a page with a red background

Explore across all browsers and platforms:

£% Collectives

FIND & OB <body bgcoolor="ch ucknorris"> test </body>
Jobs

Companies ® Run code snippet [@ Expand snippet

TEAMS

On the other hand, the value chucknerr produces a yellow background!
Stack Overflow

for Teams - ,]
Collaborate and What's going on here?
share knowledge

with a private
htral hrawsar hacrkarnond-rolor

HEAP

e Memory allocated and freed in
arbitrary order

e Arbitrary amount allocated

e The application knows a pointer = the

address of assighed memory
Pros and cons?

HEAP

e Memory allocated and freed in
arbitrary order

e Arbitrary amount allocated

e The application knows a pointer = the

address of assighed memory
Pros and cons?

Pros:

e Arbitrary amount of data
e No copying to pass data around
= Just share the pointer!

cCons:

e Slower allocation:
= Possible request for more space
to the operating system
e Possible memory fragmentation
e Slower access:
= Have to follow the pointer to get
to data

STACK V3. HEAP IN PYTHON

e Elementary pieces of data allocated on stack: integers, floats, Boolean values, ...

e Anything else allocated on the heap

STACK V3. HEAP IN PYTHON

e Elementary pieces of data allocated on stack: integers, floats, Boolean values, ...

e Anything else allocated on the heap

[SWITCH TO THE PYTHON NOTEBOOK]

Sample difference between stack and heap in Python

In [1]: # x on the stack, copied when passed to the function
Modifying the copy doesn't modify the original.
def plus one(x):

X += 1

X = 3
print(x)
plus one(x)
print(x)

3
3

Sample difference between stack and heap in Python

In [1]: # x on the stack, copied when passed to the function
Modifying the copy doesn't modify the original.
def plus one(x):

X += 1

X =3
print(x)
plus one(x)
print(x)

w w

In [2]: # Internally, a list is allocated on the heap.
Passing a list to a function means copying
1its pointer, not a copy of the list. Modifying
the list will modify the original.

def append one(y):
y.append(1)

y = [4,3,2]

print(y)
append one(y)

print(y)

[4, 3, 2]
[4, 3, 2, 1]

Stack overflow in Python?

In [3]: def same number(x):
if x ==
return 0
else:
return 1 + same number(x-1)

same number(123)

Out[3]: 123

M3

Stack overflow in Python?

In [3]: def same number(x) : In [4]: # overflow the stack
if x == 0: same number(1230000)
return 0
else: e
return 1 + same number(x-1) } eeeeeeeaaaoo-
RecursionError Traceback (mos
same number(123) t recent call last)

Input In [4], 1in
1 # overflow the stack

Out[3]: 123 ----> 2 same number(1230000)
Input In [3], in (x)
3 return 0
4 else:
----> 5 return 1 + same number(x-1)
Input In [3], in (x)
3 return 0
4 else:
----> 5 return 1 + same number(x-1)
[... skipping similar frames: same number at line 5

(2969 times)]

Input In [3], in (x)
3 return 0
4 else:
----> 5 return 1 + same number(x-1)
Input In [3], in (x)
1 def same number(x):
----> 2 if x ==
3 return 0
4 else:

RecursionError: maximum recursion depth exceeded in comp

M3

BONUS CONTENT: STACK OVERFLOW?

In [16]: // an obfuscated way of computing 1 so the compiler
// does not realize :-)
fn return one(x:u64) -> u64 {
let x = (if x > 1000 {x-10} else {x}) as ul2s;
let y = (x + 1) * (x + 1);
(y - 2*¥x - xX*x) as ub4d

10.

1

BONUS CONTENT: STACK OVERFLOW?

In [16]: // an obfuscated way of computing 1 so the compiler In [17]: fn same number 2(x:u64) -> u64 {

// does not realize :-) fn same number aux(y:u64, accumulate:u64) -> ubd {
fn return one(x:u64) -> u64 { match y {

let x = (if x > 1000 {x-10} else {x}) as ul2s; 0 == accumulate,

let y = (x + 1) * (x + 1); _ => same_number aux(

(y - 2*¥x - xX*x) as ub4d y - return one(y),
1 accumulate + 1),

}
}

same number aux(x,0)

BONUS CONTENT: STACK OVERFLOW?

In [16]: // an obfuscated way of computing 1 so the compiler In [17]: fn same number 2(x:u64) -> u64 {

// does not realize :-) fn same number aux(y:u64, accumulate:u64) -> ubd {
fn return one(x:u64) -> u64 { match y {

let x = (if x > 1000 {x-10} else {x}) as ul2s; 0 => accumulate,

let y = (x + 1) * (x + 1); _ => same_number_ aux(

(y - 2*¥x - x*x) as ub4 y - return one(y),
} accumulate + 1),

}
}

same number aux(x,0)

In [18]: same number 2(1234)

Out[18]: 1234

BONUS CONTENT: STACK OVERFLOW?

In [16]: // an obfuscated way of computing 1 so the compiler In [17]: fn same number 2(x:u64) -> u64 {
// does not realize :-) fn same number aux(y:u64, accumulate:u64) -> ut4d {
fn return one(x:u64) -> u64d { match y {
let x = (if x > 1000 {x-10} else {x}) as ul28; 0 => accumulate,
let y = (x + 1) ¥ (x + 1); _ == same_number_ aux(
(y = 2*¥x - x*x) as ub4d y - return one(y),
1 accumulate + 1),

}
}

same number aux(x,0)

In [18]: same number 2(1234)
Out[18]: 1234
In [19]: same number 2(10 000 000 00)

Out[19]: 1000000000

e No stack overflow! Why? Look up tail call and tail recursion.
e Not guaranteed in Rust, but sometimes works.

