DS-210: PROGRAMMING FOR DATA SCIENCE
LECTURE 13
1. HEAP: DANGERS OF MANUAL MEMORY MANAGEMENT
2. OWNERSHIP AND BORROWING IN RUST
J. METHODS IN RUST

LAST TIME

e Possible data locations: stack and heap

e Mostly focused on the stack

HEAP MANAGEMENT

Memory allocation:

e ask for a given amount of space
e receives a pointer to it

(or an out of memory error)

Freeing memory:

e classical manual: explicitly return it
= more complicated
e automatic: garbage collection

s comes with additional costs

C: malloc/ free

C++: new / delete +C

X

HEAP MANAGEMENT

Memory allocation:

e ask for a given amount of space
e receives a pointer to it
(or an out of memory error)

Freeing memory:

e classical manual: explicitly return it
= more complicated

e automatic: garbage collection
= comes with additional costs

C: malloc/ free

C++: new / delete +C

Pitfalls of manual memory management:

e |leaks: unused memory never returned

e attempting to use a pointer to memory that

was deallocated

e returning memory that was already

deallocated

X

HEAP MANAGEMENT

Memory allocation:

e ask for a given amount of space
e receives a pointer to it
(or an out of memory error)

Freeing memory:

e classical manual: explicitly return it
= more complicated

e automatic: garbage collection
= comes with additional costs

C: malloc/ free

C++: new / delete +C

Pitfalls of manual memory management:

e |leaks: unused memory never returned

e attempting to use a pointer to memory that

was deallocated

e returning memory that was already

deallocated

How does Rust deal with these problems?

ALLOCATING ON THE HEAP IN RUST

e Various methods. The simplest via Box: :new(...)

In [2]: // placing integers on the heap
let mut pointer = Box::new(2000);
let pointer2 : Box<i32> = Box::new(22);

ALLOCATING ON THE HEAP IN RUST

e Various methods. The simplest via Box: :new(...)

In [2]: // placing integers on the heap
let mut pointer = Box::new(2000);
let pointer2 : Box<i32> = Box::new(22);

In [3]: // accessing data via a * operator
println!("sum: {}", *pointer + *pointer2);

sum: 2022

ALLOCATING ON THE HEAP IN RUST

e Various methods. The simplest via Box: :new(...)

In [2]: s/ placing integers on the heap
let mut pointer = Box::new(2000);
let pointer2 : Box<i32> = Box::new(22);

In [3]: // accessing data via a * operator
println!("sum: {}", *pointer + *pointer2);

sum: 2022

In [4]: *pointer = 3000;
println!("sum: {}", *pointer + *pointer2);

sum: 3022

EXPERIMENT WITH PASSING THE POINTER AROUND

In [5]: fn print content(pointer:Box<i32>) {
println!("content: {}", *pointer)

}
let p = Box::new(123);
print content(p);

content: 123

EXPERIMENT WITH PASSING THE POINTER AROUND

In [5]: fn print content(pointer:Box<i32>) {
println!("content: {}", *pointer)

}
let p = Box::new(123);
print content(p);

content: 123

In [6]: let q = Box::new(321);

print content(q);
print content(q);

print content(q);
~ value moved here
print content(q);
~ value used here after move
let q = Box::new(321);
~ move occurs because 'q has type Box<i32> , whic
h does not implement the "Copy trait
use of moved value: "q°

X
WHAT HAPPENED: OWNERSHIP

e Each value in Rust has a variable that is its owner
e Only one owner

e \When the owner goes out of scope, the value is dropped

X
WHAT HAPPENED: OWNERSHIP

e Each valuein Rust has a variable that is its owner
e Only one owner
e \When the owner goes out of scope, the value is dropped

In [7]: fn print content(pointer:Box<i32>) { . .
println!("content: {}", *pointer) e Firstcallto print content:
¥
Box::new(321) is movedfrom g to

let g = Box::new(321);

print content(q); pOlnter
print_content{q}; e (if it compiled) at the end of

int_content(q);] :
- value moved here prlnt—content '
print content(q);

~ value used here after move = Box: :nEW(?)Z].) would be dFOppEd
let g = Box::new(321);
~ move occurs because “q° has type ‘Box<i32>", whic = |tS space on the heap deallocated

h does not implement the "Copy trait
use of moved value: 'q°

WHAT HAPPENED: OWNERSHIP

e Each valuein Rust has a variable that is its owner
e Only one owner
e \When the owner goes out of scope, the value is dropped

In [7]: fn print content(pointer:Box<i32>) { . .
println!("content: {}", *pointer) e Firstcallto print content:
¥
Box::new(321) is movedfrom g to

let g = Box::new(321);

print content(q); pOlnter
print_content{q}; e (if it compiled) at the end of

int_content(q);] :
- value moved here prlnt—content '
print content(q);

~ value used here after move = Box: :nEW(?)Z].) would be dFOppEd
let g = Box::new(321);
~ move occurs because “q° has type ‘Box<i32>", whic = |tS space on the heap deallocated

h does not implement the "Copy trait
use of moved value: 'q°

Second call can't proceed: the content of q is gone

MORE EXAMPLES OF OWNERSHIP

In [8]: // won't work, value moved as well
let x = Box::new(123):
println!("x = {}",*x);
let v = x;
println!("x = {}",*x);

let vy = x;

~ value moved here
println!("x = {}", *x);

~” value borrowed here after move
let x = Box::new(123);
~ move occurs because Xx has type Box<i32> , whic

h does not implement the Copy trait
borrow of moved value: “x°

Pa

MORE EXAMPLES OF OWNERSHIP

In [8]: // won't work, value moved as well
let x = Box::new(123);
T e Ty Fix our previous example by returning the pointer
let v = Xx;
println!("x = {}",*x);
In [9]: fn print content(pointer:Box<i32>) -> Box<i32> {

let y = x; println!("content: {}", *pointer);
~ value moved here pointer
println!("x = {}", *x); }
~* value borrowed here after move
let x = Box::new(123); let q = Box::new(321);

~ move occurs because 'x has type Box<i32>', whic
h does not implement the "Copy trait

borrow of moved value: “x let g = print_content(q);

let q = print content(q);
let q = print content(q);

content: 321
content: 321
content: 321

l

AVOIDING MOVING VALUES A LOT: BORROWING

In [10]: #[derive(Debug)]
struct Road {
intersection 1: us3Z,
intersection 2: u32,
max speed: u32,

}

// adding a function in the namespace of Road
impl Road {
// very useful constructor
fn new(il:u32,i2:u32,speed:u32) -> Road {
Road {
intersection 1: il,
intersection 2: 12,
max speed: speed,

}

let road = Road::new(13,23,25);
println! ("{}",road.max _speed);

25

AVOIDING MOVING VALUES A LOT: BORROWING

In [10]: #[derive(Debug)] In [11]: // checking whether it moves
struct Road { let another = road;
intersection 1: us3Z, println! ("{}",road.max speed);
intersection 2: u32,
max_speed: u32, let another = road;
} ~nnn yalue moved here
println! ("{}", road.max speed);
// adding a function in the namespace of Road nonmanananana” value borrowed here after
impl Road { Lizil=

// very useful constructor borrow of moved value: road

fn new(il:u32,i2:u32,speed:u32) -> Road {
Road {
intersection 1: il,
intersection 2: 12,
max speed: speed,

let road = Road::new(13,23,25);
println! ("{}",road.max _speed);

25

AVOIDING MOVING VALUES A LOT: BORROWING

In [10]:

#[derive(Debug)]

struct Road {
intersection 1: us3Z,
intersection 2: u32,
max speed: u32,

}

// adding a function in the namespace of Road
impl Road {
// very useful constructor
fn new(il:u32,i2:u32,speed:u32) -> Road {
Road {
intersection 1: il,
intersection 2: 12,
max speed: speed,

}

let road = Road::new(13,23,25);
println! ("{}",road.max _speed);

25

In [11]: // checking whether it moves
let another = road;
println! ("{}",road.max speed);

let another = road;

~ronnr yalue moved here
println! ("{}", road.max speed);

nannnnanananss yalue borrowed here after
move
borrow of moved value: “road’

In [12]: fn display 1(r:Road) {
println!("{:?}",r);
}

let road = Road::new(101,102,30);
display 1(road);
// display 1(road);

Road { intersection 1: 101, intersection 2: 102, max_sp
eed: 30 }

X

AVOIDING MOVING VALUES A LOT: BORROWING

In [10]:

#[derive(Debug)]

struct Road {
intersection 1: us3Z,
intersection 2: u32,
max speed: u32,

}

// adding a function in the namespace of Road
impl Road {
// very useful constructor
fn new(il:u32,i2:u32,speed:u32) -> Road {
Road {
intersection 1: il,
intersection 2: 12,
max speed: speed,

}

let road = Road::new(13,23,25);
println! ("{}",road.max _speed);

25

In [11]: // checking whether it moves
let another = road;
println! ("{}",road.max speed);

let another = road;
~ranr yalue moved here
println! ("{}", road.max speed);

nannananannnss yvalue borrowed here after
move

borrow of moved value: "road’

In [13]: fn display 1(r:Road) {
println! ("{:?}",r);
}

let road = Road::new(101,102,30);
display 1(road);
display 1(road);

display 1(road);
~nan yvalue moved here
display 1(road);
~rnan yalue used here after move
let road = Road::new(101,102,30);
~MA% move occurs because road has type Road , wh
ich does not implement the Copy trait
use of moved value: "“road’

AVOIDING MOVING VALUES A LOT: BORROWING

In [10]:

#[derive(Debug)]

struct Road {
intersection 1: us3Z,
intersection 2: u32,
max speed: u32,

}

// adding a function in the namespace of Road
impl Road {
// very useful constructor
fn new(il:u32,i2:u32,speed:u32) -> Road {
Road {
intersection 1: il,
intersection 2: 12,
max speed: speed,

}

let road = Road::new(13,23,25);
println! ("{}",road.max _speed);

25

In [11]: // checking whether it moves
let another = road;
println! ("{}",road.max speed);

let another = road;

~ronnr yalue moved here
println! ("{}", road.max speed);

nannnnanananss yalue borrowed here after
move
borrow of moved value: “road’

In [14]: fn display 1(r:Road) {
println!("{:?}",r);
}

let road = Road::new(101,102,30);
display 1(road);
// display 1(road);

Road { intersection 1: 101, intersection 2: 102, max_sp
eed: 30 }

AVOIDING MOVING VALUES A LOT: BORROWING

Read-only reference:

e Reference type becomes &Type
e Tocreate: &value
e To access content: *reference

AVOIDING MOVING VALUES A LOT: BORROWING

Read-only reference:

e Reference type becomes &Type
e Tocreate: &value
e To access content: *reference

In [15]: fn display 2(r:&Road) {
println!("{:?}",*r);
}

let road = Road::new(101,102,30);
display 2(&road); // <- have to explicitly create a reference

display 2(&road);

Road { intersection 1: 101, intersection 2: 102, max speed: 30 }
Road { intersection 1: 101, intersection 2: 102, max speed: 30 }

AVOIDING MOVING VALUES A LOT: BORROWING

Mutable reference:

e Reference type becomes &mut Type

e Tocreate: &mut value
e To access content: *reference

In [16]: // regular references won't work
fn update speed(r:&Road, new speed: u32) {
// r.max speed equivalent to (*r).max speed
// because Rust is smart
r.max speed = new speed;

r.max speed = new speed;

the data it refers to cannot be written
cannot assign to "r.max speed’, which is behind a "&

eference
help: consider changing this to be a mutable reference

&mut Road

r

AVOIDING MOVING VALUES A LOT: BORROWING

Mutable reference:

e Reference type becomes &mut Type

e Tocreate: &mut value
e To access content: *reference

In [16]: // regular references won't work
fn update speed(r:&Road, new speed: u32) {
// r.max speed equivalent to (*r).max speed
// because Rust is smart
r.max speed = new speed;

r.max speed = new speed;

the data it refers to cannot be written
cannot assign to "r.max speed’, which is behind a "&

eference
help: consider changing this to be a mutable reference

&mut Road

r

In [17]:

fn

update speed(r:&mut Road, new speed: u32) {
// r.max speed equivalent to (*r).max speed
// because Rust 1is smart

r.max speed = new speed;

AVOIDING MOVING VALUES A LOT: BORROWING

Mutable reference:

e Reference type becomes &mut Type

e Tocreate: &mut value
e To access content: *reference

In [16]: // regular references won't work In [17]:
fn update speed(r:&Road, new speed: u32) {
// r.max speed equivalent to (*r).max speed
// because Rust is smart
r.max speed = new speed;
}
In [18]:

r.max speed = new speed;

the data it refers to cannot be written
cannot assign to "r.max speed’, which is behind a "& r

eference
help: consider changing this to be a mutable reference

&mut Road

fn update speed(r:&mut Road, new speed: u32) {
// r.max speed equivalent to (*r).max speed
// because Rust 1is smart
r.max speed = new speed;

let mut road = Road::new(100,200,30);
display 2(&road);

update speed(&mut road, 25);

display 2(&road);

Road { intersection 1: 100, intersection 2: 200, max_ sp

eed: 30 }
Road { intersection 1: 100, intersection 2: 200, max_sp

eed: 25 }

METHODS

e We can add functions that are directly
associated with structs and enums!
= Then we could call them:
road.display() or
road.update speed(25)
e How?
= Put them in the namespace of the type
= make self the first argument

METHODS

. . In [19]: impl Road {
e We can add functions that are directly

// note &self: immutable reference

associated with structs and enums! fn display(&self) {
println!("{:?}",*self);

= Then we could call them: } }
road.display() or
road.update speed(25)
e How?
= Put them in the namespace of the type

= make self the first argument

METHODS

e We can add functions that are directly
associated with structs and enums!
= Then we could call them:
road.display() or
road.update speed(25)
e How?
= Put them in the namespace of the type
= make self the first argument

In [19]:

In [20]:

impl Road {

// note &self: immutable reference

fn display(&self) {
println!("{:?}",*self);

}

let mut road = Road::new(1,2,35);
road.display();
(&road) .display();

Road { intersection 1: 1, intersection 2: 2, max speed:
35 }

Road { intersection 1: 1, intersection 2: 2, max speed:
35 }

METHODS (CONTINUED)

In [21]: impl Road {
fn update speed(&mut self, new speed:u32) {
self.max speed = new speed;

}

Pa

METHODS (CONTINUED)

In [21]: impl Road {
fn update speed(&mut self, new speed:us2) {
self.max speed = new speed;

}

In [22]:

road.display();
road.update speed(25);
road.display();

Road { intersection 1: 1, intersection 2: 2, max speed:
35 }

Road { intersection 1: 1, intersection 2: 2, max speed:
25 }

3

METHODS (CONTINUED)

In [21]: impl Road {
fn update speed(&mut self, new speed:us2) {
self.max speed = new speed;

}

In [23]: impl Road {

fn this will move(self) -> Road {
self
}

In [22]:

road.display();
road.update speed(25);
road.display();

Road { intersection 1: 1, intersection 2: 2, max speed:
35 }

Road { intersection 1: 1, intersection 2: 2, max speed:
25 }

3

METHODS (CONTINUED)

In [21]: impl Road { In [22]: road.display();
fn update speed(&mut self, new speed:u32) { road.update speed(25);
self.max speed = new speed; road.display();
}
1 Road { intersection 1: 1, intersection 2: 2, max speed:
35 }
Road { intersection 1: 1, intersection 2: 2, max speed:
25 }
In [23]: impl Road { In [24]: 1let r = Road::new(1,2,35);
let r2 = r.this will move();
fn this will move(self) -> Road { r.display()

self
} let r2 = r.this will move();

} AW L WA W AN W AW o W Wi W W N W W W

d call
let r = Road::new(1,2,35);
~ move occurs because 'r has type Road , which do
es not implement the "Copy trait
borrow of moved value: "r°

‘r moved due to this metho

l

METHODS (SUMMARY) NEXT TIME

e Make first parameter self Additional topics related to what was covered today:

e \Various options:

= self:movewill occur e Specifying type to be always copied

s §self:self will beimmutable e Having multiple references at the same time

reference
» &mut self:self will be mutable

reference

