DS-210: PROGRAMMING FOR DATA SCIENCE
LECTURE 20
1. COPYING INSTEAD OF MOVING
2. MULTIPLE REFERENGES IN PARALLEL
J. GENERICS

LAST TIME: OWNERSHIP AND MOVING

In [2]:

#[derive(Debug)]
struct BoxSize {
height: f64,
width: 64,
depth: fé4,
¥

impl BoxSize {

fn new(height: 64, width:

-> BoxSize {
BoxSize{

height: height,

width, //
depth, //

width:
depth:

f64, depth: f64)

width
depth

LAST TIME: OWNERSHIP AND MOVING

In [2]: #[derive(Debug)] In [3]: let x1 box = BoxSize::new(24.0,18.0,24.0);
struct BoxSize { println! ("{:?7}", X1l box);
height: f64, let move it here = x1 box;
width: f64, //println!("{:?}", x1 box);
depth: fé4,
¥ BoxSize { height: 24.0, width: 18.0, depth: 24.0 }

impl BoxSize {
fn new(height: 64, width: 64, depth: 64)
-> BoxSize {
BoxSize{
height: height,
width, // = width: width
depth, // = depth: depth

LAST TIME: OWNERSHIP AND MOVING

In [2]: #[derive(Debug)]
struct BoxSize {
height: f64,
width: 164,
depth: f64,
¥

impl BoxSize {
fn new(height: 64, width: 64, depth:
-> BoxSize {
BoxSize{
height: height,
width, // = width: width
depth, // = depth: depth

f64)

In [4]:

let x1 box = BoxSize::new(24.0,18.0,24.0);
printin! ("{:?}", x1 box);

let move it here = x1 box;

println! ("{:?}", xL box);

let move it here = x1 box;
printin! ("{:?}", x1 box);
ranans yalue borrowed here after move
let x1 box = BoxSize::new(24.0,18.0,24.0);
AAAANN move occurs because “x1 box® has type BoxSi

ze' , which does not implement the “Copy trait
borrow of moved value: “xl box’

value moved here

CLONING

How to make a copy of data?

CLONING

How to make a copy of data?

Option 1: Implement yourself

In [5]: impl BoxSize {
fn give me a copy(&self) -> BoxSize {
let BoxSize{height,width,depth} = *self;
BoxSize{height,width,depth}

CLONING

How to make a copy of data?

Option 1: Implement yourself

In [5]: impl BoxSize {
fn give me a copy(&self) -> BoxSize {
let BoxSize{height,width,depth} = *self;
BoxSize{height,width,depth}

In [6]: let box 1 = BoxSize::new(1.1,2.2,3.3);
println!("{:?}",box 1);
let box 2 = box 1l.give me a copy();
P ri I'Itln! (T) c
println!("{:?}",box 1);
println!("{:?}",box 2);

BoxSize { height: 1.1, width: 2.2, depth:

BoxSize { height: 1.1, width: 2.2, depth:
BoxSize { height: 1.1, width: 2.2, depth:

W w
W w

—

CLONING

Option 2: Default cloning (with some extra benefits)

e Use #[derive(Clone)] in the definition
e Use method .clone() to clone an object

In [7]: #[derive(Clone,Debug)]
struct CloneablePoint {
X
y:
¥

CLONING

Option 2: Default cloning (with some extra benefits)

e Use #[derive(Clone)] in the definition
e Use method .clone() to clone an object

In [7]: #[derive(Clone,Debug)] In [8]: 1let point 1 = CloneablePoint{x:2.2,y:-1.4};
struct CloneablePoint { let point 2 = point 1.clone();
X , println! ("{:?}\n{:?}",polnt 1,polnt 2);
y:
1 CloneablePoint { x:

2.2, y: -1.4 }
CloneablePoint { x: 2.2, y: -1.4 }

CLONING

Option 2: Default cloning (with some extra benefits)

e Use #[derive(Clone)] in the definition
e Use method .clone() to clone an object

In [7]: #[derive(Clone,Debug)] In [8]: 1let point 1 = CloneablePoint{x:2.2,y:-1.4};
struct CloneablePoint { let point 2 = point 1.clone();
X , println! ("{:?}\n{:?}",polnt 1,polnt 2);
y:
1 CloneablePoint { x:

2.2, y: -1.4 }
CloneablePoint { x: 2.2, y: -1.4 }

Can then be used recursively:

In [9]: // will work
let tuple point = (1,CloneablePoint{x:1.1,y:1.1});
let copy tuple point = tuple point.clone();

CLONING

Option 2: Default cloning (with some extra benefits)

e Use #[derive(Clone)] in the definition
e Use method .clone() to clone an object

In [7]: #[derive(Clone,Debug)] In [8]: let point 1 = CloneablePoint{x:2.2,y:-1.4};
struct CloneablePoint { let point 2 = point 1l.clone();
x: f64, printin! ("{:?}\n{:?}",point 1,point 2);
y: f64,
} CloneablePoint { x: 2.2, y: -1.4 }
CloneablePoint { x: 2.2, y: -1.4 }
Can then be used recursively:
In [9]: s/ will work In [10]: s/ won't work
let tuple point = (1,CloneablePoint{x:1.1,y:1.1}); let tuple box = (1,BoxSize::new(1.1,1.2,1.3));
let copy tuple point = tuple point.clone(); let copy tuple box = tuple box.clone();

let copy tuple box = tuple box.clone();

~rrnnn method cannot be c
alled on ({integer}, BoxSize) due to unsatisfied trai
t bounds
the method "clone” exists for tuple " ({integer}, BoxSiz
e) , but its trait bounds were not satisfied
help: consider annotating "BoxSize with “#[derive(Clon

l

IMPLICIT COPYING

e Works for intergers, floats, booleans, ...
e Also for tuples made of items for which it works

In [11]: 1let int = 3;
let int 2 = int;
printin! ("{}\n{}",1int,int 2);

3
3

IMPLICIT COPYING

e Works for intergers, floats, booleans, ...
e Also for tuples made of items for which it works

In [11]: 1let int = 3; In [12]: 1let tuple = (1.2,3.1);

let int 2 = int;
println! ("{}\n{}",int,int 2);

3
3

let tuple 2 = tuple;
println! ("{:?}\n{:?}",tuple, tuple 2);

(1.2, 3.1)
(1.2, 3.1)

IMPLICIT COPYING

e Works for intergers, floats, booleans, ...
e Also for tuples made of items for which it works

In [11]: let int = 3; In [12]:
let int 2 = int;
println! ("{}\n{}",int,int 2);

3
3

To make it work: use #[derive(Copy)] in the definition

e (Clone) needed a swell

In [13]: #[derive(Copy,Clone,Debug)]
enum SearchResult {
DidntFindIt,
FoundIt(),

let tuple = (1.2,3.1);
let tuple 2 = tuple;
println! ("{:?}\n{:?}",tuple, tuple 2);

(1.2, 3.1)
(1.2, 3.1)

IMPLICIT COPYING

e Works for intergers, floats, booleans, ...
e Also for tuples made of items for which it works

In [11]: let int = 3; In [12]:
let int 2 = int;
println! ("{}\n{}",int,int 2);

3
3

To make it work: use #[derive(Copy)] in the definition

e (Clone) needed a swell

In [13]: #[derive(Copy,Clone,Debug)] In [14]:
enum SearchResult {
DidntFindIt,
FoundIt(usize),

let tuple = (1.2,3.1);
let tuple 2 = tuple;
println! ("{:?}\n{:?7}",tuple, tuple 2);

let result = SearchResult::DidntFindIt;
let will it move = result;

printin! ("{:?}\n{:?}",result,will it move);

DidntFindIt
DidntFindIt

WHAT REALLY HAPPENS WITH derive (Copy) AND derive(Clone)

WHAT REALLY HAPPENS WITH derive (Copy) AND derive(Clone)

e Defining a specific method or methods (i.e., clone)

WHAT REALLY HAPPENS WITH derive (Copy) AND derive(Clone)

e Defining a specific method or methods (i.e., clone)

e |t tells Rust that the type meets specific requirements
= they are called a trait
= to be covered later in class (next lecture?)

MULTIPLE REFERENCES AT ONCE

o useful for when we may want to access the same thing from multiple places
e they can be passed around like values

MULTIPLE REFERENCES AT ONCE

o useful for when we may want to access the same thing from multiple places
e they can be passed around like values

In [15]: // auxiliary functions

fn display(x:&132) {
println! ("{}",x);
}

fn double(x:&mut 132) {
ky k= 2;

}

MULTIPLE REFERENCES AT ONCE

o useful for when we may want to access the same thing from multiple places
e they can be passed around like values

In [15]: // auxiliary functions In [16]: // two immutable references
let mut integer = 1;
fn display(x:&132) { {
println!("{}",x); let ir = &integer;
1 let ir2 = &integer;
display(ir);
fn double(x:&mut 132) { display(ir2);
R i
}
1
1

MULTIPLE REFERENCES AT ONCE

e useful for when we may want to access the same thing from multiple places
e they can be passed around like values

In [17]: // one mutable reference

{

let mr = &mut integer;
double(mr);
display(mr);

};

2

MULTIPLE REFERENCES AT ONCE

e useful for when we may want to access the same thing from multiple places

e they can be passed around like values

In [17]:

// one mutable reference

{

1;

let mr = &mut integer;
double(mr);
display(mr);

In [18]:

// two mutable references

{
let mr = &mut integer;
let mr2 = &mut integer;
double(mr);
double(mr2) ;
}i
let mr = &mut integer;
nnnnnnnnnnss £irst mutable borrow occurs h
ere
let mr2 = &mut integer;
nannnnnnnnnn gecond mutable borrow occurs
here

double(mr);
~* first borrow later used here
cannot borrow “integer’ as mutable more than once at a

time

MULTIPLE REFERENCES AT ONCE

o useful for when we may want to access the same thing from multiple places
e they can be passed around like values

In [19]: // immutable and mutable references

{
let mr = &linteger;
let mr2 = &mut integer;
display(mr);
double(mr2) ;
1;
let mr2 = &mut integer;
““““““““““““ mutable borrow occurs here
let mr = &linteger;
““““““““ immutable borrow occurs here

display(mr);
~” immutable borrow later used here
cannot borrow “integer’ as mutable because it is also b
orrowed as immutable

MULTIPLE REFERENCES AT ONCE

o useful for when we may want to access the same thing from multiple places
e they can be passed around like values

In [19]: // immutable and mutable references In [20]: s/ immutable and mutable references
{ {
let mr = &linteger; let ir = &integer;
let mr2 = &mut integer; display(ir);
display(mr); let mr2 = &mut integer;
double(mr2) ; double(mr2) ;
}: let ir2 = &integer;
display(ir2);
let mr2 = &mut integer; }i
nonansasass™ mutable borrow occurs here
let mr = &integer; 2
nannnass immutable borrow occurs here 4

display(mr);
~” immutable borrow later used here
cannot borrow “integer’ as mutable because it is also b
orrowed as immutable

MULTIPLE REFERENCES AT ONCE

o useful for when we may want to access the same thing from multiple places

e they can be passed around like values

In [19]: // immutable and mutable references

{
let mr = &integer;
let mr2 = &mut integer;
display(mr);
double(mr2) ;
1;
let mr2 = &mut integer;
““““““““““““ mutable borrow occurs here
let mr = &linteger;
““““““““ immutable borrow occurs here

display(mr);
~* immutable borrow later used here

cannot borrow “integer® as mutable because it is also b

orrowed as immutable

In [20]: // immutable and mutable references

{
let ir = &integer;
display(ir);
let mr2 = &mut integer;
double(mr2) ;
let ir2 = &integer;
display(ir2);

}i

2

4

Rust can figure out which references no
longer used

MULTIPLE REFERENCES AT ONCE

e useful for when we may want to access the same data from multiple places
e they can be passed around like values

RULES

e At most one mutable reference at a
time

e Multiple immutable references allowed

e No mutable and immutable references
at the same time

MULTIPLE REFERENCES AT ONCE

e useful for when we may want to access the same data from multiple places
e they can be passed around like values

RULES HOW IT COULD BE USEFUL
e At most one mutable reference at a e More clear what is happening
time = Potential early bug detection
e Multiple immutable references allowed o Additional optimizations possible
e No mutable and immutable references e Multithreading (running things in
at the same time parallel):

= each thread accesses things
through references

= potentially very unpredictable
behaviour without these rules

NOT COVERED TODAY: LIFETIMES

e how long a reference lives
e important for making sure that references passed around are not in conflict
e useful for dealing with some data processing patterns

NEW TOPIC: AVOIDING COPYING CODE FOR DIFFERENT TYPES

Python:

def max(x,y):
return x if x > y else y

max(3,2)
3
max(3.1,2.2)

3.1

NEW TOPIC: AVOIDING COPYING CODE FOR DIFFERENT TYPES

Python: Very flexible! Any downsides?

def max(x,y):
return x if x > y else y

max(3,2)
3
max(3.1,2.2)

3.1

NEW TOPIC: AVOIDING COPYING CODE FOR DIFFERENT TYPES

Python: Very flexible! Any downsides?
def max(x,y):
return x if x > y else y e Requires checking each time what

types are used
e Runtime penalty

max(3,2)
3
max(3.1,2.2)

3.1

NEW TOPIC: AVOIDING COPYING CODE FOR DIFFERENT TYPES

Possible Rust "equivalent": create a copy for each type

In [21]: fn max i32(x:i32,y:1i32) -> i32 { In [22]: fn max f64(x:f64,y:T64) -> f64 {
if x > y {x} else {y} if x > y {x} else {y}
1 1
max 132(3,8) max f64(3.3,8.1)

Out[21]: 8 outf[22]: 8.1

NEW TOPIC: AVOIDING COPYING CODE FOR DIFFERENT TYPES

Possible Rust "equivalent": create a copy for each type

In [21]: fn max i32(x:132,y:i32) -> i32 { In [22]: fn max f64(x:f64,y:T64) -> f64 {
if x > y {x} else {y} if x > y {x} else {y}
} }
max 132(3,8) max f64(3.3,8.1)
Out[21]: 8 outf[22]: 8.1

Lots of work! Make the compiler do it!

In [23]: fn max<T>(x:T,y:T) -> T {
if x > y {x} else {y}
}

if x > y {x} else {y}
~ T
if x > y {x} else {y}
~ T
if x > y {x} else {y}

binary operation "> cannot be applied to type 'T°
help: consider restricting type parameter "T°

: std::cmp::PartialOrd

NEW TOPIC: AVOIDING COPYING CODE FOR DIFFERENT TYPES

Possible Rust "equivalent": create a copy for each type

In [21]: fn max i32(x:132,y:i32) -> i32 {
if x > y {x} else {y}

}
max 132(3,8)

Out[21]: 8

Lots of work! Make the compiler do it!

In [23]: fn max<T>(x:T,y:T) -> T {
if x > y {x} else {y}

}

if x

if x

if x

=

Eat

binary operation ">’
help: consider restricting type parameter "T°

else {y}
else {y}
else {y}

cannot be applied to type 'T°

: std::cmp::PartialOrd

In [22]:

Out[22]:

In [24]:

fn max f64(x:T64,y:T64) -> 64 {
if x > y {x} else {y}
}

max f64(3.3,8.1)

8.1

// add info that elements of T are comparable
fn max<T:PartialOrd>(x:T,y:T) -> T {

if x > y {x} else {y}
¥

println!("{}",max(3,8));
println! ("{}",max(3.3,8.1));
println! ("{}",max('a','b"));

O C0 Co
[

GENERICS / GENERIC DATA TYPES

In other programming languages:
e C++: templates
e Java: generics
e GO: generics
e ML, Haskell: parametric polymorphism

GENERICS / GENERIC DATA TYPES

In other programming languages:
e C++: templates
e Java: generics
e GO: generics
e ML, Haskell: parametric polymorphism

Earlier this week:

Go 1.18 arrives with much-anticipated generics

Now available in a production release, Go 1.18 introduces 'the most significant
change’ to Go since the programming language debuted in 2012.

O$ODO OO

@ By Paul Krill
1 nfoWaol

USE WITH DATA TYPES

In [25]: #[derive(Debug)]
struct Point<T> {
X: T,
y: T,
}

USE WITH DATA TYPES

In [25]: #[derive(Debug)] In [26]: 1let point int = Point {x: 2, y: 3};
struct Point<T> { printin!("{:?}", point int);
X: T,
y: T, let point float = Point {x: 4.2, y: 3.1};
1 println! ("{:?}", point float);

Point { x: 2, y: 3 }
Point { x: 4.2, y: 3.1 }

USE WITH DATA TYPES

In [25]: #[derive(Debug)] In [26]: 1let point int = Point {x: 2, y: 3};
struct Point<T> { printin!("{:?}", point int);
X: T,
y: T, let point float = Point {x: 4.2, y: 3.1};
1 println! ("{:?}", point float);

Point { x: 2, y: 3 }
Point { x: 4.2, y: 3.1 }

Functions and methods for generic data types

In [27]: impl<T> Point<T> {
fn create(x:T,y:T) -> Point<T> {
Point{x, vy}
}

USE WITH DATA TYPES

In [25]: #[derive(Debug)]
struct Point<T> {
Xx: T,
y: T,

In [26]: 1let point int = Point {x: 2, y: 3};
printin!("{:?}", point int);

let point float = Point {x: 4.2, y: 3.1};
println! ("{:?}", point float);

Point { x: 2, y: 3 }
Point { x: 4.2, y: 3.1 }

Functions and methods for generic data types

In [27]: impl<T> Point<T> {

fn create(x:T,y:T) -> Point<T> {
Point{x, vy}

In [28]: let point = Point::create('a','b');
let point2 = Point::<char>::create('c','d"');
let point3 : Point<char> = Point::create('c','d');

}

USE WITH DATA TYPES

Implementing a method

In [29]: impl<T:Copy> Point<T> {
fn swap(&mut self) {
let z = self.x;
self.x = self.y;
self.y = z;
}
¥

USE WITH DATA TYPES

Implementing a method

In [29]: impl<T:Copy> Point<T> {
fn swap(&mut self) {

let z = self.x;
self.x = self.y;
self.y = z;

In [30]: let mut point = Point::create(2,3);
println!("{:?}",point);
point.swap();
println!("{:?}",point);

Point { x:
Point { x:

2, SyEEa
3, y: 2}

USE WITH DATA TYPES

Specialized versions for different types

In [31]: impl Point<i32> { In [32]: impl Point<f64> {
fn do you use f64(&self) -> bool { fn do you use f64(&self) -> bool {
false true

} }
} }

USE WITH DATA TYPES

Specialized versions for different types

In [31]: impl Point<i32> { In [32]: impl Point<f64> {
fn do you use f64(&self) -> bool { fn do you use f64(&self) -> bool {
false true
} }
¥ ¥

In [33]: let p i32 = Point::create(2,3);
p _132.do_you use f64()

Out[33]: false

USE WITH DATA TYPES

Specialized versions for different types

In [31]: impl Point<i32> { In [32]: impl Point<f64> {
fn do you use f64(&self) -> bool { fn do you use f64(&self) -> bool {
false true
} }
¥ ¥
In [33]: let p i32 = Point::create(2,3); In [34]: let p f64 = Point::create(2.1,3.1);
p 132.do you use f64() p f64.do you use f64()

Out[33]: false Out[34]: true

