DS-210: PROGRAMMING FOR DATA SCIENGE
LECTURE 23
1. MEMORY MANAGEMENT IN VECTORS
2. HASH MAPS

1. MEMORY MANAGEMENT IN VECTORS
2. HASH MAPS

LAST TIME: VECTORS Vec<T>

e Dynamic-length array/list
e Allowed operations:
= gccess item at specific location
= push:addsomethingtothe end

= pop:remove an element from the end

e Python: list
o C++: vector<T>
e Java: ArrayList<T>/Vector<T>

LAST TIME: VECTORS Vec<T>

e Dynamic-length array/list e Python: list
e Allowed operations: e C++: vector<T>
= access item at specific location e Java: ArrayList<T>/Vector<T>

= push:addsomethingtothe end

= pop:remove an element from the end

HOW TO IMPLEMENT THIS EFFICIENTLY?

SELECT IMPLEMENTATION DETAILS

CHALLENGES

e Size changes: allocate on the heap?
e What todo if a new element added?
= Allocate a larger array and copy
everything?
= Linked list?

SELECT IMPLEMENTATION DETAILS

CHALLENGES SOLUTION
e Size changes: allocate on the heap? e Allocate more space than needed!
e What todo if a new element added? e When out of space:
= Allocate a larger array and copy = |ncrease storage size by, say, 100%
everything? = Copy everything

» Linked list?

SELECT IMPLEMENTATION DETAILS

CHALLENGES

e Size changes: allocate on the heap?
e What todo if a new element added?
= Allocate a larger array and copy
everything?
= Linked list?

SOLUTION

e Allocate more space than needed!
e When out of space:

= |ncrease storage size by, say, 100%
= Copy everything

UNDER THE HOOD

Variable of type Vec<T> contains:

e pointer to allocated memory
e size: the current number of items

e capacity: how many items could currently fit

Important: size < capacity

EXAMPLE
Method capacity() reports current storage size

In [2]: // print out the current size and capacity
fn info<T>(vector:&ec<T>) {

println!("size = {}, capacity = {}",vector.len(),vector.capacity());

}

EXAMPLE

Method capacity() reports current storage size

In [2]: // print out the current size and capacity
fn info<T>(vector:&/ec<T>) {
println!("size = {}, capacity = {}",vector.len(),vector.capacity());

}

In [3]: 1let mut v = Vec::new():
let mut capacity = v.capacity();
info(&v):
for 1 in 1..=1000 {
v.push(1i);
if v.capacity() !'= capacity {
capacity = v.capacity();

info(&v) ;

}
};
size = 0, capacity = 0
size = 1, capacity = 4
size = 5, capacity = 8
size = 9, capacity = 16
size = 17, capacity = 32
size = 33, capacity = 64
size = 65, capacity = 128
size = 129, capacity = 256
size = 257, capacity = 512
size = 513, capacity = 1024

EXAMPLE

Method capacity() reports current storage size

In [2]: // print out the current size and capacity

In [3]:

fn info<T>(vector:&Vec<T>) {

println!("size = {}, capacity = {}",vector.len(),vector.capacity());

}

let mut v = Vec::new();
let mut capacity = v.capacity();
info(&v):
for 1 in 1..=1000 {
v.push(1i);
if v.capacity() !'= capacity {
capacity = v.capacity();

info(&v) ;

}
};
size = 0, capacity = 0
size = 1, capacity = 4
size = 5, capacity = 8
size = 9, capacity = 16
size = 17, capacity = 32
size = 33, capacity = 64
size = 65, capacity = 128
size = 129, capacity = 256
size = 257, capacity = 512
size = 513, capacity = 1024

In [4]:

info(&v);
while let Some() = v.pop() {}
info(&v);

size =
size =

1000, capacity = 1024
0, capacity = 1024

EXAMPLE (CONTINUED)

In [5]: // shrinking the size manually
info(&v);

for 1 in 1..=13 {
v.push(i);

¥

info(&v);
v.shrink to fit();
info(&v);

// note: size and capacity not guaranteed
// to be the same

0, capacity = 1024
13, capacity 1024
13, capacity 13

size
size
size

EXAMPLE (CONTINUED)

In [51: // shrinking the size manually In [6]1: // creating vector with specific capacity
info(&v); let mut v2 : Vec<i32> = Vec::with capacity(1234);
info(&v2):
for 1 in 1..=13 {

v.push(1i); // avolds reallocation if you know how many items
} // to expect
info(&v); size = 0, capacity = 1234

v.shrink to fit();

info(&v);
// note: size and capacity not guaranteed
// to be the same

size
size
size

0, capacity = 1024
13, capacity 1024
13, capacity

X
SKETCH OF ANALYSIS: AMORTIZATION

e Inserting an element not constant time, O(1)

SKETCH OF ANALYSIS: AMORTIZATION

e Inserting an element not constant time, O(1)

HOWEVER

e Assumption: allocating memory size f takes

O(t) or O(1) time

e Slow operations: O(current_size) time

e Fast operations: O(1) time

e Slow operation every 2(current_size) fast

operations

SKETCH OF ANALYSIS: AMORTIZATION

e Inserting an element not constant time, O(1)

HOWEVER

e Assumption: allocating memory size f takes

O(t) or O(1) time

e Slow operations: O(current_size) time

e Fast operations: O(1) time

e Slow operation every 2(current_size) fast

operations

e Onaverage: O(1) time

e Fast operations pay for slow operations

e Terminology: O(1) amortized time

SKETCH OF ANALYSIS: AMORTIZATION

e Inserting an element not constant time, O(1)

HOWEVER e Onaverage: O(1) time

e Fast operations pay for slow operations

e Assumption: allocating memory size f takes

O(t) or O(1) time e Terminology: O(1) amortized time

e Slow operations: O(current_size) time SHRINKING?

e Fast operations: O(1) time
e Can be implemented this way too

* Slow operation every 2(current_size) fast e Example: shrink by 50% if less than 25% used
operations e Most implementations don't shrink

automatically

1. MEMORY MANAGEMENT IN VECTORS
2. HASH MAPS

COLLECTION HashMap<K, V>

Goal: a mapping from elements of K to elements of V

e elements of K called keys

e elements of V called values

COLLECTION HashMap<K, V>

Goal: a mapping from elements of K to elements of V

e elements of K called keys

e elements of V called values

In [7]: // creating a hash map and inserting pair
use std::collections::HashMap;

// number of wins in a local Conterstrike league
Let mut wins = HashMap::<String,ul6>::new();

wins.insert(String::from("Boston University"),24);
wins.insert(String::from("Harvard"),b22);
wins.insert(String::from("Boston College"),20);
wins.insert(String::from("Northeastern"),32);

COLLECTION HashMap<K, V>

Goal: a mapping from elements of K to elements of V

e elements of K called keys

e elements of V called values

In [7]: // creating a hash map and inserting pair
use std::collections::HashMap;

// number of wins in a local Conterstrike league
Let mut wins = HashMap::<String, =1:new();

wins.insert(String::from("Boston University"),24);
wins.insert(String::from("Harvard"),b22);

wins.insert(String::from("Boston College"),20);
wins.insert(String::from("Northeastern"),32);

Extracting areference: returns Option<&V>

In [8]: wins.get("Boston University")

Out[8]: Some(24)

COLLECTION HashMap<K, V>

Goal: a mapping from elements of K to elements of V

e elements of K called keys

e elements of V called values

In [7]: // creating a hash map and inserting pair
use std::collections::HashMap;

// number of wins in a local Conterstrike league
Llet mut wins = HashMap::<String,ult>::new();

wins.insert(String::from("Boston University"),24);
wins.insert(String::from("Harvard"),b22);

wins.insert(String::from("Boston College"),20);
wins.insert(String::from("Northeastern"),32);

Extracting areference: returns Option<&V>

In [8]: wins.get("Boston University") In [9]: wins.get("MIT")

Out[8]: Some(24) Out[9]: None

Insert if not present:

In [10]: wins.entry(String::from("MIT")).or insert(10);
wins.get ("MIT")

Out[l0]: Some(1l0)

Insert if not present:

In [10]: wins.entry(String::from("MIT")).or insert(10);
wins.get ("MIT")

Out[le]: Some(1@)

Updating:

In [11]: { // block to limit how long the reference lasts
let entry = wins.entry(String::from("Boston University")).or _insert(10);
*entry = 50;
}
wins.insert(String::from("Boston University"),24);
wins.get("Boston University")

Out[1ll]: Some(24)

Pa

ITERATING

In [12]: for (k,v) in &wins {
println!("{}: {}",k,v);

1;
MIT: 10
Harvard: 22

Boston College: 20
Northeastern: 32
Boston University: 24

ITERATING

In [12]:

In [13]:

for (k,v) in &wins {
println!("{}: {}",k,v);

1;
MIT: 10
Harvard: 22

Boston College: 20
Northeastern: 32
Boston University: 24

for (k,v) in &mut wins {
*V += 1;

1;

for (k,v) in &wins {
println!("{}: {}",k,Vv);

1;
MIT: 11
Harvard: 23

Boston College: 21
Northeastern: 33
Boston University: 25

NEXT TIME

e How do hash tables work?

e Typical graph representations

