DS-210: PROGRAMMING FOR DATA SCIENCE
LECTURE 25
|. REPRESENTING GRAPHS: EXAMPLES IN RUST
2. SAMPLE GRAPH ALGORITHMS
J. MODULES

DISCUSSION SECTION TODAY

e Reading input from file
= You'll be asked to do this on your homework
e Additional examples of using collections

I. REPRESENTING GRAPHS: EXAMPLES IN RUST
2. SAMPLE GRAPH ALGORITHMS
J. MODULES

X

SAMPLE GRAPH

Sample graph from the previous lecture:
1 4

This lecture's graphs:

e undirected
e no self-loops
= self-loop: edge connecting a vertex to
itself
e no parallel edges (connecting the same pair of
vertices)

X

SAMPLE GRAPH

Sample graph from the previous lecture:
1 4

This lecture's graphs:

e undirected
e no self-loops
= self-loop: edge connecting a vertex to
itself
e no parallel edges (connecting the same pair of
vertices)

Simplifying assumption:

e nverticeslabeled) ...n — 1

SAMPLE GRAPH

Sample graph from the previous lecture: e undirected

In [2]:

1

// number of vertices
let n : = 6;

// list of edges
let edges : Vec<(

This lecture's graphs:

4 e no self-loops

= self-loop: edge connecting a vertex to

2 itself

e no parallel edges (connecting the same pair of
vertices)

Simplifying assumption:

e nverticeslabeled) ...n — 1

)> = vec![(0,1), (1,2), (2,3), (3,0), (2,0), (2,4), (2,5)];

ADJACENCY LIST REPRESENTATION

List of neighbors for each vertex

1 =

3 =P

[o 2 B (=T I |\ T I [

4 =

N ||| |=~] || [WwW

ADJACENCY LIST REPRESENTATION

In [3]: let mut graph list : Vec<Vec< >> = vec![vec![];n];

List of neighbors for each vertex

1 =

3 =P

4 =

N ||| |=~] || [WwW

ADJACENCY LIST REPRESENTATION

In [3]: let mut graph list : Vec<Vec<usize>> = vec![vec![];n];

List of neighbors for each vertex

In [4]: for (v,w) in edges.iter() {
graph list[*v].push(*w);
graph list[*w].push(*v);

1

1 =

3 =P

4 =

N ||| |=~] || [WwW

ADJACENCY LIST REPRESENTATION

List of neighbors for each vertex

1 =

3 =P

[\ — (] ek

4 =

N ||| |=~] || [WwW

In [3]:

In [4]:

In [5]:

let mut graph list

: Vec<Vec<usize>> = vec![vec![];n];

for (v,w) 1in edges.iter() {
graph list[*v].push(*w);
graph list[*w].push(*v);

1

for i in 0..graph list.len() {
println! ("{}: {:?}", 1, graph list[i]);

1

U s WwMhN =@

: [1,
: [0,
: [1,
: [2,
: [2]
: [2]

3,
2]
3!
0]

2]

0, 4, 5]

ADJACENCY MATRIX REPRESENTATION

Matrix of Boolean values

=]

S -

[t | 2

| | |

[—

== |=|&

—

&I |- | |

h & W N = S
= Y .
=T (== (== [}

[S—Y

ADJACENCY MATRIX REPRESENTATION

In [6]: let mut graph matrix = vec![vec![false;n];n];

Matrix of Boolean values

1 4

0 1 2 3 4 5

o |1]1]1]0]0

5 1{1] [1]ofo]o0

0 21101] 1]
3lalol1] [o]o

4]0/0]1]0] |0

slolol1]o]0

ADJACENCY MATRIX REPRESENTATION

In [6]: let mut graph matrix = vec![vec![false;n];n];

Matrix of Boolean values

In [7]: for (v,w) in edges.iter() {

graph matrix[*v] [*w] true;

1 4 graph matrix[*w] [*v] = true;

0 1 2 3 4 5 }i
0 1[1(1(0(0
5 1|1] |1]o0]0]0
0 2(1]1] J1f1]1
3(1({0]1 010
4(0{0]11]0 0
510]0(1]1010

ADJACENCY MATRIX REPRESENTATION

In [6]: let mut graph matrix = vec![vec![false;n];n];

Matrix of Boolean values

In [7]: for (v,w) in edges.iter() {

graph matrix[*v][*w] = true;
1 4 graph matrix[*w] [*v] = true;
0 1 2 3 4 5 I
0 1{1(1]010
2 111 1101010 In [8]: for row in &graph matrix {
20111 11111 for entry in row.iter() {
0 s[1l0l1 010 print!("{}",if *entry {"1"} else {"0"});
}
410(0]110 0 println!("");
sloflo[1]o]o0)
3 5 0111600
101000
110111
101000
001000

001000

X
WHAT IF LABELS ARENOTIN {O, 1, ... n — 1}7

T = type of labels

WHAT IF LABELS ARENOTIN {O, 1, ... n — 1}7

T = type of labels

Solution 1: Map everything to this range

e Create hash maps frominputlabelsto {0, 1,...n — 1}
e Create areverse hash map to recover labels when needed

WHAT IF LABELS ARENOTIN {O, 1, ... n — 1}7

T = type of labels

Solution 1: Map everything to this range

e Create hash maps frominputlabelsto {0, 1,...n — 1}
e Create areverse hash map to recover labels when needed

Solution 2: Replace with hash maps and hash sets

e Adjacency lists: use HashMap<T, Vec<T>>
e Adjacency matrix: use HashSet<(T,T)>

e Bonus gain: HashSet< (T, T)> better than adjacency matrix for sparse graphs

WHAT IF THE GRAPH IS DIRECTED?

WHAT IF THE GRAPH IS DIRECTED?

Adjacency lists:

e separate lists incoming/outgoing edges

e depends on what information needed for your algorithm

WHAT IF THE GRAPH IS DIRECTED?

Adjacency lists:

e separate lists incoming/outgoing edges

e depends on what information needed for your algorithm

Adjacency matrix:

e example: edge u — v and no edge in the opposite direction:
= matrix[u][v] = true
= matrix[v][u] = false

I. REPRESENTING GRAPHS: EXAMPLES IN RUST
2. SAMPLE GRAPH ALGORITHMS
J. MODULES

COUNT TRIANGLES

Problem to solve: Consider all triples of vertices. What is the number of those in which all vertices are
connected?

COUNT TRIANGLES

Problem to solve: Consider all triples of vertices. What is the number of those in which all vertices are
connected?

Solution 1: Enumerate explicitly over all triples and check which are triangles, using the adjacency matrix

In [9]: let mut count: = 0;
for u in 0..n {
for v in u+1l..n {
for w in v+1..n {
if (graph matrix[u][v] && graph matrix[v][w] && graph matrix[u][w]) {
count += 1;

Out[9]: 2

COUNT TRIANGLES

Problem to solve: Consider all triples of vertices. What is the number of those in which all vertices are
connected?

Solution 2: Follow links from each vertex to see if you come back in three steps

In [10]: 1let mut count: u32 = 0;
for u in 0..n {
for v in &graph list[u] {
for w in &graph list[*v] {
for u2 in &graph list[*w] {
if u == *uz {
count += 1;

Out[l0]: 12

COUNT TRIANGLES

Problem to solve: Consider all triples of vertices. What is the number of those in which all vertices are
connected?

Solution 2: Follow links from each vertex to see if you come back in three steps

In [10]: 1let mut count: u32 = 0;
for u in 0..n {
for v in &graph list[u] {
for w in &graph list[*v] {
for u2 in &graph list[*w] {
if u == *uz {
count += 1;

Out[1l0]: 12
In [11]: // need to divide by 6
// due to symmetries triangles counted multiple times

count / 6

Out[11l]: 2

COUNT TRIANGLES

Problem to solve: Consider all triples of vertices. What is the number of those in which all vertices are
connected?

Different implementation of solution 2

In [12]: fn walk(current:usize,destination:usize,steps:usize,adjacency list:&Vec<Vec<usize>>) -> u32 {
match steps {
® => if current == destination {1} else {0},
:::-{

let mut count = 0;
for v in &adjacency list[current] {

count += walk(*v,destination,steps-1,adjacency list);
}

count

?

COUNT TRIANGLES

Problem to solve: Consider all triples of vertices. What is the number of those in which all vertices are
connected?

Different implementation of solution 2

In [12]: fn walk(current:usize,destination:usize,steps:usize,adjacency list:&Vec<Vec<usize>>) -> u32 {
match steps {
® => if current == destination {1} else {0},
:::-{

let mut count = 0;
for v in &adjacency list[current] {

count += walk(*v,destination,steps-1,adjacency list);
}

count

In [13]: let mut count = 0;
for v in 0..n {
count += walk(v,v,3,&graph list);
¥

count / 6

Out[13]: 2

COUNT TRIANGLES

Problem to solve: Consider all triples of vertices. What is the number of those in which all vertices are
connected?

Solution 3: For each vertex try all pairs of neighbors (via adjacency lists) and see if they are connected (via
adjacency matrix)

In [14]: 1let mut count: = 0;
for u in 0..n {
let neighbors = &graph list[u];
for v in neighbors {
for u in neighbors {
if graph matrix[*v][*u] {
count += 1;

}

}

}
count / 6

Out[1l4]: 2

I. REPRESENTING GRAPHS: EXAMPLES IN RUST
2. SAMPLE GRAPH ALGORITHMS
J. MODULES

MODULES

Up to now: our functions and data types (mostly) in the same namespace
e exception: functions in structs and enums

MODULES

Up to now: our functions and data types (mostly) in the same namespace
e exception: functions in structs and enums

One can create a namespace, using mod

In [15]: mod things to say {
fn say hi() {
say ("Hi");
}

fn say bye() {
say("Bye");
}

fn say(what: &str) {
printin! ("{}!",what);
}

MODULES

Up to now: our functions and data types (mostly) in the same namespace
e exception: functions in structs and enums

One can create a namespace, using mod

In [15]: mod things to say {
fn say hi() {

say("Hi*); You have to use the module name to refer to access a
} function.
fn say bye() {

"Bye") :

} say("Bye”) In [16]: things to say::say hi();
fn say(what: &) { things to say::say hi();

println! ("{}!",what); private function
) function “say hi® is private

MODULES

e By default, all definitions in the namespace are private.
e Advantage: Can hide all internally used code
e Use pub to make functions or types public

In [17]: mod things to say { In [18]: things to say::say hi();
pub fn say hi() {
say("Hi"); Hi!
}

pub fn say bye() {
say("Bye");
}

fn say(what: &str) {
println! ("{}!",what);
}

10 BE CONTINUED...

