DS-210: PROGRAMMING FOR DATA SCIENCE
LECTURE 28
1. EXTERNAL CRATE EXAMPLE: c s v (READING CSV)
2. BASIC COLLECTIONS: STAGK AND QUEUE
3. GRAPH EXPLORATION: BREADTH-FIRST SEARCH (BFS)



1. EXTERNAL CRATE EXAMPLE: c s v (READING CSV)
2. BASIC COLLECTIONS: STAGK AND QUEUE
3. GRAPH EXPLORATION: BREADTH-FIRST SEARCH (BFS)




CRATE csv (AND serde): READING A CSV FILE

See:

e https://crates.io/crates/csv

e https://crates.io/crates/serde

e Create a new project
e Addto Cargo.toml:

csv = "1.1.6"
serde = "1.0.136"



CRATE csv (AND serde): READING A CSV FILE

See:

e https://crates.io/crates/csv

e https://crates.io/crates/serde

e Create a new project e Copy the second example from the csv docs
e Addto Cargo.toml: e Update the field names

csv = "1.1.6"
serde = "1.0.136"




X
CRATE csv (AND serde): READING A CSV FILE

See:

e https://crates.io/crates/csv

e https://crates.io/crates/serde

e Create a new project e Copy the second example from the csv docs
e Addto Cargo.toml: e Update the field names

csv = "1.1.6"
serde = "1.0.136"

e Search for solution online!




CRATE csv (AND serde): READING A CSV FILE

Solution: modify Cargo.toml for serde

serde = { version = "1.0.136", features = ["derive"] }




CRATE csv (AND serde): READING A CSV FILE

Solution: modify Cargo.toml for serde

serde = { version = "1.0.136", features = ["derive"] }

Our case: add this before Record to supress warnings

#[allow(dead code,non snake case)]




CRATE csv (AND serde): READING A CSV FILE

Solution: modify Cargo.toml for serde

serde = { version = "1.0.136", features = ["derive"] }

Our case: add this before Record to supress warnings

#[allow(dead code,non snake case)]

Bottom line:

e parameters other than the version number possible in Cargo.toml




RELYING ON EXTERNAL PROJECTS

Things to consider about external libraries:

e trustworthy?
e stable?
e long-term survival?

e doyoureally need it?




RELYING ON EXTERNAL PROJECTS

Things to consider about external libraries: Many things best left to professionals:

Never implement your own crypto!
e trustworthy?

e stable?
e long-term survival?

e doyoureally need it?




RELYING ON EXTERNAL PROJECTS

Things to consider about external libraries: Many things best left to professionals:

Never implement your own crypto!
e trustworthy?

? . .
* stable: Implementing your own things can be a great
e long-term survival? educational experience!

e doyoureally need it?




X

EXTREME EXAMPLE

theregister.com/2016/03/23/npm_left_pad chaos/

pad was fetched 2,486,696 times in just the last month, according to NPM. It
was that popular.

module.exports = leftpad;

function leftpad (str, len, ch) {
str = String(str);

var i = -1;

if (Ich && ch !==8) ch = ' '
len = len - str.length;

while (++i < len) {

str = ch + str;

return str;

You can witness some of the fallout here, here, here and here.

To fix the internet, Laurie Voss, CTO and cofounder of NPM, took the
"unprecedented"” step of restoring the unpublished left-pad 0.0.3 that apps
required. Normally, when a particular version is unpublished, it's gone and
cannot be restored. Now NPM has forcibly resurrected that particular version

Pa



X
EXTREME EXAMPLE

theregister.com/2016/03/23/npm_left_pad chaos/

pad was fetched 2,486,696 times in just the last month, according to NPM. It
was that popular.

module.exports = leftpad;

function leftpad (str, len, ch) {
str = string(str);

var i1 = -1;
if (lch & ch !==8) ch = " *;

len = len - str.length;

while (++i < len) {
str = ch + str;
}

return str;

You can witness some of the fallout here, here, here and here.

To fix the internet, Laurie Voss, CTO and cofounder of NPM, took the
"unprecedented"” step of restoring the unpublished left-pad 0.0.3 that apps
required. Normally, when a particular version is unpublished, it's gone and
cannot be restored. Now NPM has forcibly resurrected that particular version

A Rust and cargo: can't delete libraries that were published

Pa



1. EXTERNAL CRATE EXAMPLE: c s v (READING CSV)
2. BASIC COLLECTIONS: STACK AND QUEUE
3. GRAPH EXPLORATION: BREADTH-FIRST SEARCH (BFS)



BASIC DATA STRUCTURES: STACK AND QUEUE

Stack (same name as in "stack vs. heap"):

e FILO: firstinlast out/LIFO: last in first out
e putitemsonthe top

e getitems from the top

e canuse Vec for this: methods push and

pPop




BASIC DATA STRUCTURES: STACK AND QUEUE

Stack (same name as in "stack vs. heap"): Queue:
e FILO: firstinlast out/LIFO: last in first out e FIFO: firstin last out
e putitemsonthe top e add items at the end
e getitems from the top e getitems from the front

e canuse Vec for this: methods push and
pop




RUST: std: :collections: :VecDeque<T>

e generalization of queue and stack

e accessing front: methods push front(x) and pop front()
e accessing back: methods push back(x) and pop back()

e pop front and pop back return Option<T>




X
RUST: std: :collections: :VecDeque<T>

e generalization of queue and stack

e accessing front: methods push front(x) and pop front()
e accessing back: methods push back(x) and pop back()

e pop front and pop back return Option<T>

In [2]: use std::collections::VecDeque;

// using as a stack: push back & pop back
Let mut stack = VecDeque::new();

stack.push back(1);
stack.push back(2);
stack.push back(3);

println!("{:?7}",stack.pop back());
println!("{:?}",stack.pop back());

stack.push back(4);
stack.push back(5);

println!("{:?}",stack.pop back());

Some(3)
Some(2)
Some(5)




X

RUST: std: :collections: :VecDeque<T>

e generalization of queue and stack

e accessing front: methods push front(x) and pop front()
e accessing back: methods push back(x) and pop back()

e pop front and pop back return Option<T>

In [2]: use std::collections::VecDeque; In [3]: // using as a queue: push back & pop front
let mut queue = VecDeque: :new();
// using as a stack: push back & pop back

Let mut stack = VecDeque::new(); queue.push back(1);
queue.push back(2);
stack.push back(1); queue.push back(3);
stack.push back(2);
stack.push back(3); printin!("{:?}",queue.pop front());

println! ("{:?7}",queue.pop front());
println! ("{:?}",stack.pop back());
println! ("{:?}",stack.pop back()); queue.push back(4);

queue.push back(5);
stack.push back(4);

stack.push back(5); println! ("{:?}",queue.pop front());
println! ("{:?}",stack.pop back()); Some (1)
Some(2)
Some (3) Some(3)
Some(2)
Some(5)




IMPLEMENTATION OF VecDeque

How would you do it?




IMPLEMENTATION OF VecDeque

How would you do it?

e use an array allocated on the heap
e keep index of the front and end

e Wrap around




IMPLEMENTATION OF VecDeque

How would you do it?

e use an array allocated on the heap Out of space?

e keep index of the front and end

e Wrap around e double thesize

e good complexity due to amortization




1. EXTERNAL CRATE EXAMPLE: c sv (READING CSV)
2. BASIC COLLECTIONS: STAGK AND QUEUE
3. GRAPH EXPLORATION: BREADTH-FIRST SEARCH (BFS)



GRAPH EXPLORATION

Sample popular methods:

e breadth-first search (BFS)
s next lecture
= USES a queue

= great for computing distances!




X
GRAPH EXPLORATION

Sample popular methods:

e breadth-first search (BFS)
s next lecture
= USES a queue

= great for computing distances!

e depth-first search (DFS)
» next lecture
m uses astack




X
GRAPH EXPLORATION

Sample popular methods:

e breadth-first search (BFS)
s next lecture
= USES a queue

= great for computing distances!

e depth-first search (DFS)
» next lecture
m uses astack

e random walks
= example: PageRank (see HW 10)




