DS-210: PROGRAMMING FOR DATA SCIENGE
LECTURE 29
1. GRAPH EXPLORATION OVERVIEW
2. BREADTH-FIRST SEARCH (BFS)
3. DEPTH-FIRST SEARCH (DFS)
4. BONUS CONTENT: STRONGLY CONNECTED COMPONENTS

1. GRAPH EXPLORATION OVERVIEW

2. BREADTH-FIRST SEARCH (BFS)

3. DEPTH-FIRST SEARCH (DFS)

4. BONUS CONTENT: STRONGLY CONNECTED COMPONENTS

GRAPH EXPLORATION

Sample popular methods:

e breadth-first search (BFS)

® LUSES a queue

GRAPH EXPLORATION

Sample popular methods:

e breadth-first search (BFS)

® LUSES a queue

e depth-first search (DFS)
= uses astack

GRAPH EXPLORATION

Sample popular methods:

e breadth-first search (BFS)

® LUSES a queue

e depth-first search (DFS)
= uses astack

e random walks
= example: PageRank (see Homework 10)

USEFUL GRAPH SUBROUTINES

In [2]: type Vertex = usize;
type ListOfEdges = Vec<(Vertex,Vertex)>;
type AdjacencylLists = Vec<Vec<Vertex>>;

#[derive(Debug)]

struct Graph {
n: usize, // vertex labels in {0,...,n-1}
outedges: AdjacencylLists,

}

// reverse direction of edges on a list
fn reverse edges(list:&ListOfEdges)
-> ListOfEdges {
let mut new list = vec![];
for (u,v) in list {
new list.push((*v,*u));
}
new list

}

reverse edges(&vec![(3,2),(1,1),(0,100),(100,0)])

Out[2]: [(2, 3), (1, 1), (1ee, O), (O, 100)]

USEFUL GRAPH SUBROUTINES

In [2]: type Vertex = usize; In [3]: impl Graph {
type ListOfEdges = Vec<(Vertex,Vertex)>; fn add directed edges(&mut self,
type AdjacencylLists = Vec<Vec<Vertex>>; edges:&L1istOfEdges) {
for (u,v) in edges {
#[derive(Debug)] self.outedges[*u].push(*v);
struct Graph { }
n: usize, // vertex labels in {0,...,n-1} }
outedges: AdjacencylLists,
1 fn create directed(n:usize,edges:&ListOfEdges)
-> Graph {
// reverse direction of edges on a list let mut g = Graph{n,outedges:vec![vec![];n]};
fn reverse edges(list:&ListOfEdges) g.add directed edges(edges);
-> ListOfEdges { g
let mut new list = vec![]; }
for (u,v) in list {
new list.push((*v,*u)); fn create undirected(n:usize,edges:&ListOfEdges)
} -> Graph {
new list let mut g = Self::create directed(n,edges);
1 g.add directed edges(&reverse edges(edges));
g
reverse edges(&vec![(3,2),(1,1),(0,100),(100,0)]) }
¥

Out[2]: [(2, 3), (1, 1), (1ee, O), (O, 100)]

1. GRAPH EXPLORATION OVERVIEW

2. BREADTH-FIRST SEARCH (BFS)

3. DEPTH-FIRST SEARCH (DFS)

4. BONUS CONTENT: STRONGLY CONNECTED COMPONENTS

SAMPLE GRAPH

In [4]:

Out[4]:

let n: usize = 10;
let edges: ListOfEdges =

graph

Graph { n: 10, outedges:

vec![(0,1),(0,2),(1,2),(2,4),(2,3),(4,3),(4,5),(5,6),(4,6),(6,8),(6,7),(8,7),(1,9)1;
let graph = Graph::create undirected(n,&edges) ;

[(ri, 27,

(2, 9, 0],

(4, 3, 0,

1],

[2, 4],

[3, 5, 6, 2],

[6, 4],

(8, 7, 5, 4],

[6, 81,

[7, 61,

(111 }

BREADTH-FIRST SEARCH (BFS)

General idea:

e start from some vertex and explore its neighbors (distance 1)
e then explore neighbors of neighbors (distance 2)

e then explore neighbors of neighbors of neighbors (distance 3)

Our example: start from vertex 2

BREADTH-FIRST SEARCH (BFS)

General idea:

e start from some vertex and explore its neighbors (distance 1)
e then explore neighbors of neighbors (distance 2)

e then explore neighbors of neighbors of neighbors (distance 3)

Our example: start from vertex 2

Distance 1

Distance 2
Dist D;
istance 1 @

[\ N\

Distance 3
N - (7
—
4 6
T®

IMPLEMENTATION: COMPUTE DISTANCES FROM VERTEX 2 VIA BFS

distance[v]:distance of v from vertex 2 (None is unknown)

In [5]: let start: Vertex = 2; // <= we'll start from this vertex
let mut distance: Vec<Option<u32>> = vec![None;graph.n];

distance[start] = Some(0); // <= we know this distance
distance

Out[5]: [None, None, Some(®), None, None, None, None, None, None, None]

IMPLEMENTATION: COMPUTE DISTANCES FROM VERTEX 2 VIA BFS

distance[Vv] :distance of v from vertex 2 (None is unknown)

In [5]: let start: Vertex = 2; // <= we'll start from this vertex
let mut distance: Vec<Option<u32>> = vec![None;graph.n];

distance[start] = Some(0); // <= we know this distance
distance

Out[5]: [None, None, Some(®@), None, None, None, None, None, None, None]

queue: vertices to consider, they will arrive layer by layer

In [6]: use std::collections::VecDeque;
let mut queue: VecDeque<Vertex> = VecDeque: :new();
queue.push back(start);
queue

out[6]: [2]

IMPLEMENTATION: COMPUTE DISTANCES FROM VERTEX 2 VIA BFS

Main loop:
e consider vertices one by one
e add their new neighbors to the processing queue

IMPLEMENTATION: COMPUTE DISTANCES FROM VERTEX 2 VIA BFS

Main loop:
e consider vertices one by one
e add their new neighbors to the processing queue

In [7]: println!("{:?}",queue);
while let Some(v) = queue.pop front() { // new unprocessed vertex
println!("{:?}",queue);
for u in graph.outedges[v].iter() {
if let None = distance[*u] { // consider all unprocessed neighbors of v

distance[*u] = Some(distance[v].unwrap() + 1);
queue.push back(*u);
println!("{:?}",queue);

}
}
};
[2]
[]
[4]
[4, 3]
[4, 3, 0]
[4, 3, 0, 1]
[3, 0, 1]
[3, 0, 1, 5]
[3, 0, 1, 5, 6]
‘?, [0, 1, 5, 6]
[1, 5, 6]

IMPLEMENTATION: COMPUTE DISTANCES FROM VERTEX 2 VIA BFS

Main loop:
e consider vertices one by one
e add their new neighbors to the processing queue

In [7]: println!("{:?}",queue);
while let Some(v) = queue.pop front() { // new unprocessed vertex
println!("{:7}",queue);
for u in graph.outedges([v].iter() {
if let None = distance[*u] { // consider all unprocessed neighbors of v

distance[*u] = Some(distance[v].unwrap() + 1);
queue.push back(*u);
printin!("{:?7}",queue);

}
}

}i
[2]
[]
[4]
[4, 3]
[4, 3, 0]
(4, 3, 0, 1]
[3, 0, 1]
[3, 0, 1, 5]
[3, 0, 1, 5, ©]
[0, 1, 5, 6]
[1, 5, 6]
[5, 6]
[5, 6, 9]
[6, 9]
[9]
[9, 8]
[9, 8, 7]
[8, 7]

[7]
[]

IMPLEMENTATION: COMPUTE DISTANCES FROM VERTEX 2 VIA BFS

Compare results:

Distance 1

Distance 2
1@

[\ N\

Distance D;

/

Distance 3
-~ (2
"]
4 6
T®

In [8]: print!("vertex:distance");
for v in 0..graph.n {
print! (" {}:{}",v,distance[v].unwrap());

}
println!();

vertex:distance 0:1 1:1 2:0 3:1 4:1 5:2 6:2 7:3 8:3 9:2

CONNECTED COMPONENTS VIA BFS

Connected component (in an undirected graph):

a maximal set of vertices that are connected o.o

CONNECTED COMPONENTS VIA BFS

Connected component (in an undirected graph):

a maximal set of vertices that are connected o.o

Sample graph:

In [9]: 1let n: = 9;
let edges: Vec<(Vertex,Vertex)> = vec![(0,1),(0,2),(1,2),(2,4),(0,4),(5,7),(6,8)]1;
let graph = Graph::create undirected(n, &edges);

®

DISCOVERING VERTICES OF A CONNECTED COMPONENT VIA BFS

component[v]: v'scomponent's number (None = not assigned yet)

In [10]: type Component = usize;

fn mark component bfs(vertex:Vertex, graph:&Graph, component:&mut Vec<Option<Component=>, component no:Component) {
component[vertex] = Some(component no);

let mut queue = std::collections::VecDeque::new();
queue.push back(vertex);

while let Some(v) = queue.pop front() {
for w in graph.outedges[v].iter() {
i1f let None = component[*w] {
component[*w] = Some(component no);
queue.push back(*w);

l

MARKING ALL CONNECTED COMPONENTS

Loop over all unassigned vertices and assign component numbers

In [11]: let mut component: Vec<Option<Component>> = vec![None;n];
let mut component count = 0;
for v in 0..n {
if let None = component[v] {
component count += 1;
mark component bfs(v, &graph, &mut component, component count);

}
1;

MARKING ALL CONNECTED COMPONENTS

Loop over all unassigned vertices and assign component numbers

In [11]: let mut component: Vec<Option<Component>> = vec![None;n];
let mut component count = 0;
for v in 0..n {
if let None = component[v] {
component count += 1;
mark component bfs(v, &graph, &mut component, component count);

1;

In [12]: // Let's verify the assignment!
print! ("{} components:\n[",component count);
for v in 0..n {
print! ("{}:{} ",v,component[v].unwrap());

}
println!("]J\n");

4 components:
[©:1 1:1 2:1 3:2 4:1 5:3 6:4 7:3 8:4]

o
e

(2
@

©
®-@

1. GRAPH EXPLORATION OVERVIEW
2. BREADTH-FIRST SEARCH (BFS)
3. DEPTH-FIRST SEARCH (DFS)

4. BONUS CONTENT: STRONGLY CONNECTED COMPONENTS

DEPTH-FIRST SEARCH (DFS)

General idea:

e keep going to an unvisited vertex

e when stuck make a step back and try again

DEPTH-FIRST SEARCH (DFS)

General idea:

e keep going to an unvisited vertex o. o

e when stuck make a step back and try again '

og° .

DEPTH-FIRST SEARCH (DFS)

General idea:

e keep going to an unvisited vertex

e when stuck make a step back and try again

DEPTH-FIRST SEARCH (DFS)

General idea:

e keep going to an unvisited vertex

e when stuck make a step back and try again

DEPTH-FIRST SEARCH (DFS)

General idea:

e keep moving to an unvisited neighbor

e when stuck make a step back and try again

DEPTH-FIRST SEARCH (DFS)

General idea:

e keep going to an unvisited vertex

e when stuck make a step back and try again

DEPTH-FIRST SEARCH (DFS)

General idea:

e keep going to an unvisited vertex

e when stuck make a step back and try again

DEPTH-FIRST SEARCH (DFS)

General idea:

e keep going to an unvisited vertex

e when stuck make a step back and try again

DEPTH-FIRST SEARCH (DFS)

General idea:

e keep going to an unvisited vertex

e when stuck make a step back and try again

DEPTH-FIRST SEARCH (DFS)

General idea:

e keep going to an unvisited vertex

e when stuck make a step back and try again

DEPTH-FIRST SEARCH (DFS)

General idea:

e keep going to an unvisited vertex

e when stuck make a step back and try again

DEPTH-FIRST SEARCH (DFS)

General idea:

e keep going to an unvisited vertex

e when stuck make a step back and try again

DEPTH-FIRST SEARCH (DFS)

General idea:

e keep going to an unvisited vertex

e when stuck make a step back and try again

DEPTH-FIRST SEARCH (DFS)

General idea:

e keep going to an unvisited vertex

e when stuck make a step back and try again

A
S
L/

DEPTH-FIRST SEARCH (DFS)

General idea:

e keep going to an unvisited vertex

e when stuck make a step back and try again

CONNECTED COMPONENTS VIA DFS

Recursive DFS exploration:

In [13]: fn mark component dfs(vertex:Vertex, graph:&Graph, component:&mut Vec<Option<Component>>, component no:Component) {
component[vertex] = Some(component no);
for w in graph.outedges[vertex].iter() {
if let None = component[*w] {
mark component dfs(*w,graph,component, component no);

2.1)

CONNECTED COMPONENTS VIA DFS

Recursive DFS exploration:

In [13]: fn mark component dfs(vertex:Vertex, graph:&Graph, component:&mut Vec<Option<Component>>, component no:Component) {
component[vertex] = Some(component no);

for w in graph.outedges[vertex].iter() {
if let None = component[*w] {

mark component dfs(*w,graph,component, component no);

Going over all components and assigning vertices:

In [14]: 1let mut component = vec![None;graph.n];
let mut component count = 0;

for v in 0..graph.n {
if let None = component[v] {
component count += 1;

mark component dfs(v,&graph,&mut component, component count);

1

2.1)

CONNECTED COMPONENTS VIA DFS

Let's verify the results:

In [15]: print!("{} components:\n[",component count);
for v in 0..n {
print!("{}:{} ",v,component[v].unwrap());
¥
printin!("]J\n");

4 components:
[©:1 1:1 2:1 3:2 4:1 5:3 6:4 7:3 8:4]

22)

X
BFS VS. DFS

BFS

e gives graph distances between vertices (fundamental problem!)

e connectivity

BFS VS. DFS

BFS

e gives graph distances between vertices (fundamental problem!)

e connectivity

DFS

e What s it good for?

BFS V3. DFS

BFS

e gives graph distances between vertices (fundamental problem!)

e connectivity

DFS LOTS OF THINGS!

e Whatis it good for? Examples:

e find edges/vertices crucial for connectivity
e orient edges of a graph so it is still connected
e strongly connected components in directed

graphs

1. GRAPH EXPLORATION OVERVIEW

2. BREADTH-FIRST SEARCH (BFS)

3. DEPTH-FIRST SEARCH (DFS)

4. BONUS CONTENT: STRONGLY CONNECTED COMPONENTS

STRONG CONNECTIVITY

What does connectivity mean in directed graphs?
What if you can get from v to w, but not from w to v?

STRONG CONNECTIVITY

What does connectivity mean in directed graphs?
What if you can get from v to w, but not from w to v?

Strongly connected component:
a maximal set of vertices such that you can get from any of them to any other one

STRONG CONNECTIVITY

What does connectivity mean in directed graphs?
What if you can get from v to w, but not from w to v?

Strongly connected component:
a maximal set of vertices such that you can get from any of them to any other one

Fact: There is a unigue decomposition

FIND THE UNIQUE DECOMPOSITION VIA TWO DFS RUNS

GENERAL IDEA

First DFS:

e maintain auxiliary stack .S
e visit all vertices, starting DFS multiple times from unvisited vertices as needed
e put each vertex, when done going over its neighbors, on the stack

FIND THE UNIQUE DECOMPOSITION VIA TWO DFS RUNS

GENERAL IDEA

First DFS:

e maintain auxiliary stack .S
e visit all vertices, starting DFS multiple times from unvisited vertices as needed

e put each vertex, when done going over its neighbors, on the stack

Second DFS:

e reverse edges of the graph!!!
e consider vertices in order from the stack
e for each unvisited vertex, start DFS: it will visit a new strongly connected component

IMPLEMENTATION

In [16]: let n: usize = 7;
let edges: ListOfEdges = vec![(O,1),(1,2),(2,0),(3,4),(4,5),(5,3),(2,3),(6,5)];
let graph = Graph::create directed(n, &edges);
let graph reverse = Graph::create directed(n,&reverse edges(&edges));
println! ("{:?}\n{:?}",graph,graph _reverse);

Graph { n: 7, outedges: [[1], [2], [e, 31, [4]1, [5], [3], [5]1] }
Graph { n: 7, outedges: [[2], [©1, [11, [5, 21, [31, [4, 61, [1] }

IMPLEMENTATION (FIRST DFS)

In [17]: 1let mut stack: Vec<Vertex> = Vec::new();
let mut visited = vec![false;graph.n];

TR

IMPLEMENTATION (FIRST DFS)

In [17]: 1let mut stack: Vec<Vertex> = Vec::new();
let mut visited = vec![false;graph.n];

In [18]: fn dfs collect stack(v:Vertex, graph:&Graph, stack:&mut Vec<Vertex>, visited:&mut Vec<bool=>) {
if 'visited[v] {
visited[v] = true;
for w in graph.outedges([v].iter() {
dfs collect stack(*w, graph, stack, visited);

}
stack.push(v);

8.1)

IMPLEMENTATION (FIRST DFS)

In [17]: 1let mut stack: Vec<Vertex> = Vec::new();
let mut visited = vec![false;graph.n];

In [18]: fn dfs collect stack(v:Vertex, graph:&Graph, stack:&mut Vec<Vertex>, visited:&mut Vec<bool>) {
if !'visited[v] {
visited[v] = true;
for w in graph.outedges|[v].iter() {
dfs collect stack(*w, graph, stack, visited);

}
stack.push(v);

In [19]: for v in 0..graph.n {
dfs collect stack(v,&graph,&mut stack,&mut visited);
}i

stack

out[19]: [5, 4, 3, 2, 1, 0, 6]

8.1)

IMPLEMENTATION (SECOND DFS, REVERSED GRAPH)

In [20]: 1let mut component: Vec<Option<Component>> = vec![None;graph.n];
let mut component count = 0;

while let Some(v) = stack.pop() {
if let None = component[v] {
component count += 1;
mark component dfs(v, &graph reverse, &mut component, component count);

1;

IMPLEMENTATION (SECOND DFS, REVERSED GRAPH)

In [20]: 1let mut component: Vec<Option<Component>> = vec![None;graph.n];
let mut component count = 0;

while let Some(v) = stack.pop() {
if let None = component[v] {
component count += 1;
mark component dfs(v, &graph reverse, &mut component, component count);

1

In [21]: print!("{} components:\n[",component count);
for v in 0..n {
print! ("{}:{} ",v,component[v].unwrap());

}
println! ("J\n");

3 components:
[0:2 1:2 2:2 3:3 4:3 5:3 6:1]

19.

