DS-210: PROGRAMMING FOR DATA SCIENGE
LECTURE 30
1. CODE FORMATTING
2. PRIORITY QUEUES
J. POPULAR IMPLEMENTATION: BINARY HEAP

1. CODE FORMATTING
2. PRIORITY QUEUES
J. POPULAR IMPLEMENTATION: BINARY HEAP

DON'T GIVE UP ON CODE FORMATTING!

e Rust doesn't require any specific indentation

e Still a good idea to make your code readable

‘ In [2]: fn h(z:i32)->i32{let mut t=0.max(z.min(1)-0.max(z-1));for y in 1..=2.min(z){t+=h(z-y)}t}

DON'T GIVE UP ON CODE FORMATTING!

e Rust doesn't require any specific indentation
e Still a good idea to make your code readable

In [2]: fn h(z:i32)->i32{let mut t=0.max(z.min(1)-0.max(z-1));for y in 1..=2.min(z){t+=h(z-y)}t}

In [3]: for i in 0..10 {
println! ("{}:{}",1,h(1));
}i

Voo~V WNRFEO
WMNEOOULWNE PG

= = W

DIGRESSION: INTERNATIONAL OBFUSCATED C CODE CONTEST (10CCC)

Digit recognition: kopczynsk1l. c, Eryk Kopczynski, 2004

main(0){int I,Q,Ll=0;17T(I=1%x4){1l=6;1T(1l>5)1+=Q-8?1-(Q=getchar()-2)%2:1;17f(Q*x=2)0+="has dirtiest IF"[(I/-Q&12)-1/Q%4];}printf("%d\n",8+0%4);}

X
DIGRESSION: INTERNATIONAL OBFUSCATED C CODE CONTEST (10CCC)

Digit recognition: kopczynsk1l. c, Eryk Kopczynski, 2004

main(0){int I,Q,Ll=0;17T(I=1%x4){1l=6;1T(1l>5)1+=Q-8?1-(Q=getchar()-2)%2:1;17f(Q*x=2)0+="has dirtiest IF"[(I/-Q&12)-1/Q%4];}printf("%d\n",8+0%4);}

Need a flight simulator?

X

DIGRESSION: INTERNATIONAL OBFUSCATED C CODE CONTEST (10CCC)

Digit recognition: kopczynsk1l. c, Eryk Kopczynski, 2004

main(0){int I,Q,Ll=0;17T(I=1%x4){1l=6;1T(1l>5)1+=Q-8?1-(Q=getchar()-2)%2:1;17f(Q*x=2)0+="has dirtiest IF"[(I/-Q&12)-1/Q%4];}printf("%d\n",8+0%4);}

Need a flight simulator? banks. c, Carl Banks, 1998

TOOL FOR FORMATTING RUST CODE: rustfmt

e |f you have Rust installed, you should already have it.

TOOL FOR FORMATTING RUST CODE: rustfmt

e |f you have Rust installed, you should already have it.

e rustfmt [filename] replaces the file with nicely formatted version
= use rustfmt --backup [filename] tosave the original file

TOOL FOR FORMATTING RUST CODE: rustfmt

e |f you have Rust installed, you should already have it.

e rustfmt [filename] replaces the file with nicely formatted version
= use rustfmt --backup [filename] tosave the original file

[see demo with comparison via kdiff3]

TOOL FOR FORMATTING RUST CODE: rustfmt

e |f you have Rust installed, you should already have it.

e rustfmt [filename] replaces the file with nicely formatted version
= use rustfmt --backup [filename] tosave the original file

[see demo with comparison via kdiff3]

e rustfmt --help:seethecommand line parameters
e rustfmt --print-config default:default configthat can be adjusted

1. GODE FORMATTING
2. PRIORITY QUEUES
J. POPULAR IMPLEMENTATION: BINARY HEAP

PRIORITY QUEUES

Standard queue:

e things returned in order in which they were

inserted

PRIORITY QUEUES

Standard queue: Priority queue:

e things returned in order in which they were e items have priorities

inserted e highest priority items returned first

RUST STANDARD LIBRARY IMPLEMENTATION: BLnaryHeap<T>

RUST STANDARD LIBRARY IMPLEMENTATION: BLnaryHeap<T>

e Priorities provided by the ordering of
elements of T (viatrait Ord)

e Method push(T):

push element onto the heap

e Method pop() -> Option<T>:

remove the greatest and return it

RUST STANDARD LIBRARY IMPLEMENTATION: BLnaryHeap<T>

In [4]:

e Priorities provided by the ordering of
elements of T (viatrait Ord)

e Method push(T):

push element onto the heap

e Method pop() -> Option<T>:

remove the greatest and return it

use std::collections: :BinaryHeap;

Llet mut pg = BinaryHeap::new();

pg.push(2);
pg.push(7);
pPq.push(3);

println! ("{:?}",pq.pop());
printin!("{:?}",pq.pop());

pqg.push(3);
pqg.push(4);

println! ("\n{:?}",pq.pop());
println! ("{:?}",pq.pop());
printin! ("{:?}",pq.pop());
println! ("{:?}",pq.pop());

Some(7)
Some(3)

Some (4)
Some(3)
Some(2)
None

GETTING THE SMALLEST ELEMENT OUT FIRST

Reverse<T>:wrapper that reverses the ordering of elements of a type

In [5]: 3 < 4 In [6]: use std::cmp::Reverse;
Reverse(3) < Reverse(4)
Out[5]: true
Out[6]: false

GETTING THE SMALLEST ELEMENT OUT FIRST

Reverse<T>:wrapper that reverses the ordering of elements of a type

In [5]: 3 < 4 In [6]: use std::cmp::Reverse;
Reverse(3) < Reverse(4)
Out[5]: true
Out[6]: false

In [7]: 5 < 3 In [8]: Reverse(5) < Reverse(3)

OQut[7]: false Out[8]: true

X

GETTING THE SMALLEST ELEMENT OUT FIRST

Reverse<T>:wrapper that reverses the ordering of elements of a type

In [5]:

Out[5]:

In [7]:

Out[7]:

In [9]:

3 <4 In [6]: use std::cmp::Reverse;
Reverse(3) < Reverse(4)
true
Qut[6]: false
5 < 3 In [8]: Reverse(5) < Reverse(3)
false Qut[8]: true

let mut pq = BinaryHeap::new();
pq.push(Reverse(3));

pg.push(Reverse(1l));
pg.push(Reverse(7));

println! ("{:?}",pq.pop());
println! ("{:?}",pq.pop());

pg.push(Reverse(0));
println!("\n{:?}",pq.pop());

Some (Reverse(1l))
Some (Reverse(3))

Some (Reverse(0))

X
DEFAULT LEXICOGRAPHIC ORDERING ON TUPLES AND STRUCTS

Lexicographic ordering:

e Compare first elements
e If equal, compare second elements

e If equal, compare third elements...

DEFAULT LEXICOGRAPHIC ORDERING ON TUPLES AND STRUCTS

Lexicographic ordering:

e Compare first elements
e If equal, compare second elements

e If equal, compare third elements...

TUPLES

In [10]: (3,4) < (2,7) In [11]: (11,2,7) < (11,3,4)

Out[10]: false Out[1l1l]: true

DEFAULT LEXICOGRAPHIC ORDERING ON TUPLES AND STRUCTS

Lexicographic ordering:

e Compare first elements
e If equal, compare second elements

e If equal, compare third elements...

TUPLES

In [10]: (3,4) < (2,7) In [11]: (11,2,7) < (11,3,4)

Out[10]: false Out[1l1l]: true

STRUCT (DERIVE Ord)

In [12]: #[derive(PartialEq,Eq,Partialord,Ord,Debug)] In [13]: let p = Point{x:3,y:4};

struct Point { let q = Point{x:2,y:7};
println!("{}", p < q);
printin!("{}", p > q);

X: 132,
y: 132,

}

false
true

ANOTHER OPTION: IMPLEMENT YOUR OWN COMPARISON

e More complicated, won't cover today

e See the documentation for Ord or examples online

X
HOW TO IMPLEMENT A PRIORITY QUEUE?

Assumptions:

e At most n elements

e Comparison takes O(1) time

HOW TO IMPLEMENT A PRIORITY QUEUE?

Assumptions:

e At most n elements

e Comparison takes O(1) time

STRAIGHFORWARD

Representation: a vector of elements

HOW TO IMPLEMENT A PRIORITY QUEUE?

Assumptions:

e At most n elements

e Comparison takes O(1) time

STRAIGHFORWARD

Representation: a vector of elements

Push:

e add to the end of the vector

e Time complexity: O(1) (amortized) time

HOW TO IMPLEMENT A PRIORITY QUEUE?

Assumptions:

e At most n elements

e Comparison takes O(1) time

STRAIGHFORWARD

Representation: a vector of elements

Push:

e add to the end of the vector

e Time complexity: O(1) (amortized) time

Pop:

e goover all elements, select the greatest
e Time complexity: O(n)

1. GODE FORMATTING
2. PRIORITY QUEUES
J. POPULAR IMPLEMENTATION: BINARY HEAP

X
BINARY HEAPS

e Dataorganized into a binary tree
e Everyinternal node not smaller than its children

Basic property: The root has the current maximum, i.e., the answer to next pop

X
BINARY HEAPS

Efficient storage:

e Tree levels filled from left to right

£ AEIE QAT EEh
Aok A

e Can be mapped to a vector

BINARY HEAPS

Efficient storage:

e Tree levels filled from left to right

1B |'1\0‘1U3|Ol

8 2 3 455 ¢ 7 39110 ..
\’J/\ #
— B

e Easy to move to the parent or children using N dee e)/2]

e Can be mapped to a vector

vector indices

(ndleye 20+ &+

X
HOW ARE OPERATIONS IMPLEMENTED?

HOW ARE OPERATIONS IMPLEMENTED?

PUSH

e add at the end the array
e fix the ordering by pushing the element up

HOW ARE OPERATIONS IMPLEMENTED?

PUSH

e add at the end the array
e fix the ordering by pushing the element up

POP

e remove and return the root
e replace with the last element

e fix the ordering, pushing the element down

HOW ARE OPERATIONS IMPLEMENTED?

PUSH

e add at the end the array
e fix the ordering by pushing the element up

POP

e remove and return the root
e replace with the last element

e fix the ordering, pushing the element down

COMPLEXITY OF PUSH AND POP

e Proportional to the number of levels

e So O(log n)

