DS-210: PROGRAMMING FOR DATA SCIENGE
LECTURE 31
1. APPLICATIONS OF PRIORITY QUEUES: SORTING AND SHORTEST PATHS
2. SLICES

1. APPLICATIONS OF PRIORITY QUEUES: SORTING AND SHORTEST PATHS
2. SLIGES

LAST TIME: PRIORITY QUEUES

Collection of items:

e push:insertanitem

e pop:remove and return the greatest item in a collection

LAST TIME: PRIORITY QUEUES

Collection of items:

e push:insertanitem

e pop:remove and return the greatest item in a collection

Popular implementation: binary heap

e push and pop in O(log n) time
e Rust: std::collections: :BinaryHeap<T>

X
APPLICATION 1: SORTING A.K.A. HEAPSORT

APPLICATION 1: SORTING A.K.A. HEAPSORT

e Put everythinginto a priority queue
e Remove items in order

APPLICATION 1: SORTING A.K.A. HEAPSORT

e Put everythinginto a priority queue
e Remove items in order

In [2]: use std::collections::BinaryHeap;

fn heap sort(v:&mut Vec<iz2>) {
let mut pg = BinaryHeap::new();
for v in v.iter() {
Pq.push(*v);
}

for i in (0..v.len()).rev() {
v[i] = pqg.pop().unwrap();
}
}

X
APPLICATION 1: SORTING A.K.A. HEAPSORT

e Put everythinginto a priority queue
e Remove items in order

In [2]: use std::collections::BinaryHeap;

fn heap sort(v:&mut Vec<iz2=) {
let mut pg = BinaryHeap::new();
for v in v.iter() {
Pq.push(*v);
}
for i in (0..v.len()).rev() {
v[i] = pq.pop().unwrap();
}
}

In [3]: 1let mut v = vec![23,12,7,37,14,11];
heap sort(&mut v);
v

Out[3]: [7, 11, 12, 14, 23, 37]

APPLICATION 1: SORTING A.K.A. HEAPSORT

e Put everythinginto a priority queue
e Remove items in order

In [2]: use std::collections::BinaryHeap;

fn heap sort(v:&mut Vec<iz2=) {
let mut pg = BinaryHeap::new();
for v in v.iter() {
Pq.push(*v);
}

for 1 in (0..v.len()).rev() {
v[i] = pq.pop().unwrap();
}
}

In [3]: 1let mut v = vec![23,12,7,37,14,11];
heap sort(&mut v);
v

Out[3]: [7, 11, 12, 14, 23, 37]

Total running time: O(n log n) for n numbers

MORE DIRECT, USING RUST OPERATIONS

In [4]: fn heap sort 2(v:Vec<i32>) -> Vec<i32> {
BinaryHeap::from(v).into sorted vec()

}

No extra memory allocated: the initial vector, intermediate binary heap, and final vector all use the same
space on the heap

e BinaryHeap::from(v) consumes v
e Into sorted vec() consumes theintermediate binary heap

MORE DIRECT, USING RUST OPERATIONS

In [4]: fn heap sort 2(v:Vec<i32>) -> Vec<i32> {
BinaryHeap::from(v).into sorted vec()

}

No extra memory allocated: the initial vector, intermediate binary heap, and final vector all use the same
space on the heap

e BinaryHeap::from(v) consumes v
e Into sorted vec() consumes theintermediate binary heap

In [5]: let mut v = vec![7,17,3,1,8,11];
heap sort 2(v)

Qut[5]: [1, 3, 7, 8, 11, 17]

MORE DIRECT, USING RUST OPERATIONS

In [4]: fn heap sort 2(v:Vec<i32>) -> Vec<i32> {
BinaryHeap::from(v).into sorted vec()

}

No extra memory allocated: the initial vector, intermediate binary heap, and final vector all use the same
space on the heap

e BinaryHeap::from(v) consumes v
e Into sorted vec() consumes theintermediate binary heap

In [5]: let mut v = vec![7,17,3,1,8,11];
heap sort 2(v)

Qut[5]: [1, 3, 7, 8, 11, 17]

Sorting already provided for vectors (currently use other algorithms): sort and sort unstable

In [6]: 1let mut v = vec![7,17,3,1,8,11]; In [7]: 1let mut v = vec![7,17,3,1,8,11];
v.sort(); v.sort unstable();
Y Y

Out[6]: [1, 3, 7, 8, 11, 17] Out(7]: [1, 3, 7, 8, 11, 17]

APPLICATION 2: SHORTEST WEIGHTED PATHS (DIJKSTRA'S ALGORITHM)

e Input graph: edges with positive values, directed or undirected

e Goal: Compute all distances from a given vertex v

APPLICATION 2: SHORTEST WEIGHTED PATHS (DIJKSTRA'S ALGORITHM)

e Input graph: edges with positive values, directed or undirected

e Goal: Compute all distances from a given vertex v

[see the demo on the board]

APPLICATION 2: SHORTEST WEIGHTED PATHS (DIJKSTRA'S ALGORITHM)

e Input graph: edges with positive values, directed or undirected

e Goal: Compute all distances from a given vertex v

[see the demo on the board]

How it works:

e Greedily take the closest unprocessed vertex
= |[tsdistance must be correct

e Keep updating distances of unprocessed vertices

X
AUXILIARY GRAPH DEFINITIONS

In [8]: type Vertex = usize;
type Distance = usize;
type Edge = (Vertex, Vertex, Distance);

#[derive(Debug, Copy,Clone)]
struct Outedge {

vertex: Vertex,

length: Distance,

}

type AdjacencylList = Vec<Outedge>;

#[derive(Debug)]
struct Graph {
n: usize,
outedges: Vec<AdjacencyList>,

}

impl Graph {
fn create directed(n:usize,edges:&Vec<Edge>) -> Graph {
let mut outedges = vec![vec![];n];
for (u, v, length) in edges {
outedges[*u].push(Outedge{vertex: *v, length: *length});
}
Graph{n,outedges}

LOAD OUR GRAPH

In [9]: let n = 6;
let edges: Vec<Edge> = vec![(©,1,5),(0,2,2),(2,1,1),(2,4,1),(1,3,5),(4,3,1),(1,5,11),(3,5,5),(4,5,8)1];
let graph = Graph::create directed(n, &edges);
graph

Out[9]: Graph { n: 6, outedges: [[Outedge { vertex: 1, length: 5 }, Outedge { vertex: 2, length: 2 }], [Outedge { vertex: 3, length: 5
}, Outedge { vertex: 5, length: 11 }], [Outedge { vertex: 1, length: 1 }, Outedge { vertex: 4, length: 1 }], [Outedge { verte
x: 5, length: 5 }], [Outedge { vertex: 3, length: 1 }, Outedge { vertex: 5, length: 8 }1, []1] }

OUR IMPLEMENTATION

In [10]: 1let start: Vertex = 0:

let mut distances: Vec<Option<Distance> > = vec![None; graph.n];
distances[start] = Some(0):

In [11]: use core::cmp::Reverse;

Llet mut pg = BinaryHeap::<Reverse<(Distance,Vertex)>>::new();
pq.push(Reverse((0,start)));

OUR IMPLEMENTATION

In [10]: 1let start: Vertex = 0:

let mut distances: Vec<Option<Distance> > = vec![None; graph.n];
distances[start] = Some(0):

In [11]: use core::cmp::Reverse;

Llet mut pg = BinaryHeap::<Reverse<(Distance,Vertex)>>::new();
pq.push(Reverse((0,start)));

In [12]: while let Some(Reverse((dist,v))) = pq.pop() {
if distances[v].unwrap() == dist {
for Outedge{vertex,length} in graph.outedges[v].iter() {
let new dist = dist + *length;
let update = match distances[*vertex] {
None => {true} |
Some(d) => {new dist < d}

};
if update {
distances[*vertex] = Some(new dist);
pqg.push(Reverse((new dist,*vertex)));
}

1

?

OUR IMPLEMENTATION

In [10]: 1let start: Vertex = 0:

let mut distances: Vec<Option<Distance> > = vec![None; graph.n];
distances[start] = Some(0):

In [11]: use core::cmp::Reverse;

Llet mut pg = BinaryHeap::<Reverse<(Distance,Vertex)>>::new();
pq.push(Reverse((0,start)));

In [12]: while let Some(Reverse((dist,v))) = pq.pop() {
if distances[v].unwrap() == dist {
for Outedge{vertex,length} in graph.outedges[v].iter() {
let new dist = dist + *length;
let update = match distances[*vertex] {
None => {true} |
Some(d) => {new dist < d}

};
if update {
distances[*vertex] = Some(new dist);
pqg.push(Reverse((new dist,*vertex)));
}

1
In [13]: distances

Out[13]: [Some(®), Some(3), Some(2), Some(4), Some(3), Some(9)]

1. APPLICATIONS OF PRIORITY QUEUES: SORTING AND SHORTEST PATHS
2. SLIGES

SLICES

Slice = reference to subsection of the data

SLICES

Slice = reference to subsection of the data

Slices of an array:

e arrayoftype [T,]
e sliceoftype &[T] or &mut [T]

In [14]: {
// immutable slice of an array
let arr: [132; 5] = [0,1,2,3,4];
let slice: &[132] = &arr[l..3];
println!("{:?}",slice);
println!("{}", slice[0]);
}i

[1, 2]
1

SLICES

Slice = reference to subsection of the data

Slices of an array:

e arrayoftype [T, 1]
e sliceoftype &[T] or &mut [T]

In [14]: {

// immutable slice of an array
let arr: [132; 5] = [0,1,2,3,4];
let slice: &[132] = &arr[l..3];
println!("{:?}",slice);
println!("{}", slice[0]);

}i

[1, 2]

1

In [15]:

{
// mutable slice of an array
let mut arr = [0,1,2,3,4];
let mut slice = &mut arr[2..4];
println!("{:?}",slice);
slice[0@] = slice[0] * slice[0];
println! ("{}", slice[0]);
println!("{:?}",arr);

}i

[2, 3]

4

[0, 1, 4, 3, 4]

SLICES

Work for vectors too!

In [16]: 1let mut v = vec![0,1,2,3,4];
{
let slice = &v[1..3];
println!("{:?}",slice);

1;

[1, 2]

SLICES

Work for vectors too!

In [16]: 1let mut v = vec![0,1,2,3,4];

{
let slice = &v[1..3];
println!("{:?}",slice);

};

[1, 2]

In [17]: {
let mut slice = &mut v[1..3];
// iterating over slices works as well
for x in slice.iter mut() {
X *= 1000;

}

}i

v

Out[17]: [e, 1e06, 2000, 3, 4]

<

SLICES ARE REFERENCES: ALL BORROWING RULES STILL APPLY!

e At most one mutable reference at a time
¢ Noimmutable references allowed with a mutable reference

¢ Many immutable references allowed simultaneously

SLICES ARE REFERENCES: ALL BORROWING RULES STILL APPLY!

e At most one mutable reference at a time

¢ Noimmutable references allowed with a mutable reference

¢ Many immutable references allowed simultaneously

In [18]: // this won't work!
let mut v = vec![1,2,3,4,5,6,7];
{
let ref 1 = &mut v[2..5];
let ref 2 = &v[1..3];
ref 1[0] = 7;
printin!("{}",ref 2[1]);

let ref 2 = &v[1..3];
~ immutable borrow occurs here
let ref 1 = &mut v[2..5];
~ mutable borrow occurs here
ref 1[0] = 7;
““““““““ mutable borrow later used here

cannot borrow “v' as immutable because it is also borro
wed as mutable

SLICES ARE REFERENCES: ALL BORROWING RULES STILL APPLY!

e At most one mutable reference at a time
¢ Noimmutable references allowed with a mutable reference

¢ Many immutable references allowed simultaneously

In [18]: // this won't work!

In [19]: // and this reordering will
let mut v = vec![1,2,3,4,5,6,7];

let mut v = vec![1,2,3,4,5,6,7];

{ {
let ref 1 = &mut v[2..5]; let ref 1 = &mut v[2..5];
let ref 2 = &v[1..3]; ref 1[0] = 7,
ref 1[0] = 7; let ref 2 = &v[1..3];
printin!("{}",ref 2[1]); printin!("{}",ref 2[1]);
} }i
let ref 2 = &v[1..3]; 7

~ immutable borrow occurs here
let ref 1 = &mut v[2..5];
~ mutable borrow occurs here
ref 1[0] = 7;
““““““““ mutable borrow later used here
cannot borrow “v' as immutable because it is also borro
wed as mutable

X
MEMORY REPRESENTATION OF SLICES

e Pointer (to heap or stack) Compared to vector: no capacity (cannot be

e Length extended)

-
-

i into boxed slice E N

Vec<T> Box<[T]>
ptr cap len ptr len
i] T T T T
% 7 \ J
len Y .) len Y
CAp w__ intowee _.~"
Note: Stringhassame ~ ~~ 7777 .
memory layout as Vec<ug> Y
: &[T]
ptr len

T[T T T T

.Y J
len Y

Note: &str has same
memory layout as &[u8]

Cropped from "Rust container cheat sheet" by Raph Levien, Copyright Google Inc. 2017 Source: https://docs.google.com/presentation/d/1g-c7UAyrUIM-evTo 1 pd 857 0gwd wiYxmPZVOQkoDmH4 fedit#slide=id.p License: CC BY (https:/creativecommons.org/licenses/by/4.0)

