DS-210: PROGRAMMING FOR DATA SCIENCE
LECTURE 34
1. BINARY SEARCH TREES
2. APPLICATIONS (RANGE SEARCHING)
J.RUST: BTreeMap AND BTreeSet

X
BINARY SEARCH TREES

e Organize datainto a binary tree
= Similar to binary heaps

BINARY SEARCH TREES

e Organize datainto a binary tree
= Similar to binary heaps

e Invariant at each node:
= 3|l left descendants < parent

= parent < all right descendants

X

BINARY SEARCH TREES

e Organize datainto a binary tree
= Similar to binary heaps

e Invariant at each node:
= 3|l left descendants < parent

= parent < all right descendants

e Compared to binary heaps:

= different ordering of elements

BASIC OPERATIONS: FIND A KEY &

How can we do this?

BASIC OPERATIONS: FIND A KEY &

How can we do this?

e Descend recursively from the root until k found or stuck:
= |[f £k < value at the current node, go left

= |f k > value at the current node, go right

[see examples on the board]

BASIC OPERATIONS: INSERT A KEY &

How can we do this?

BASIC OPERATIONS: INSERT A KEY £

How can we do this?

e Keep descending from the root until you leave the tree
» |f k& < value at the current node, go left
= |[f kK > value at the current node, go right

e Create a new node containing k there

[see examples on the board]

BASIC OPERATIONS: DELETE A NODE

How can we do this?

BASIC OPERATIONS: DELETE A NODE

How can we do this?

e More complicated: need to find a replacement
e Ifthe node s aleaf: nothing to do
e If only one child: move the child up
e Otherwise:
= find the rightmost descendant in the left subtree

» |t will have at most one child

[see examples on the board]

COST OF THESE OPERATIONS?

COST OF THESE OPERATIONS?

O(depth of the tree)

COST OF THESE OPERATIONS?

O(depth of the tree)

Bad news: the depth can be made proportional to n, the number of nodes

COST OF THESE OPERATIONS?

O(depth of the tree)

Bad news: the depth can be made proportional to n, the number of nodes

Good news: smart ways to make the depth O(log n)

BALANCED BINARY SEARCH TREES

There are smart ways to rebalance the tree!
e Depth: O(log n)
e Usually additional information has to be kept at each node

e Popular examples:
= Red-black trees
= AVL trees

X
WHY USE BINARY SEARCH TREES?

e Hash maps and hash sets give us O(1) time operations?

WHY USE BINARY SEARCH TREES?

e Hash maps and hash sets give us O(1) time operations?

REASON 1:

e Good worst case behavior: no need for a good hash function

WHY USE BINARY SEARCH TREES?

e Hash maps and hash sets give us O(1) time operations?

REASON 1:

e Good worst case behavior: no need for a good hash function

REASON 2:

e Can answer efficiently questions such as:
= What is the smallest/greatest element?

= What is the smallest element greater than x?

= List all elements between x and y

X
EXAMPLE: FIND THE SMALLEST ELEMENT GREATER THAN x

X
EXAMPLE: FIND THE SMALLEST ELEMENT GREATER THAN x

Question: How can you list all elements in order in O(n) time?

EXAMPLE: FIND THE SMALLEST ELEMENT GREATER THAN x

Question: How can you list all elements in order in O(n) time?

Answer: recursively starting from the root

e visit left subtree
e output current node
e Vvisitright subtree

EXAMPLE: FIND THE SMALLEST ELEMENT GREATER THAN x

Question: How can you list all elements in order in O(n) time?

Answer: recursively starting from the root

e visit left subtree
e output current node
e Vvisitright subtree

Outputting smallest element greater than x:

e Like above, ignoring whole subtrees smaller than x
e Will get the first element greater than x in O(log n) time

EXAMPLE: FIND THE SMALLEST ELEMENT GREATER THAN x

Question: How can you list all elements in order in O(n) time?

Answer: recursively starting from the root

e visit left subtree
e output current node
e Vvisitright subtree

Outputting smallest element greater than x:

e Like above, ignoring whole subtrees smaller than x

e Will get the first element greater than x in O(log n) time

For balanced trees: listing f first greater elements takes O(t + log n) time

BINARY SEARCH TREES IN RUST'S STANDARD LIBRARY?

e Not exactly
e For efficiency reasons, B-trees:
= generalization of binary trees

= between B and 2 B keys in a node

= corresponding number of subtrees

BINARY SEARCH TREES IN RUST'S STANDARD LIBRARY?

e Not exactly

e For efficiency reasons, B-trees:

= generalization of binary trees
= between B and 2 B keys in a node

= corresponding number of subtrees

Where can you meet B-trees

e Traditionally, very popular in databases

e Interesting that now considered more efficient for in memory operations

std::collections: :BTreeSet AND

Sets and maps, respectively

std::collections::BTreeSetAND ... ::BTreeMap

Sets and maps, respectively

In [2]: s/ let's create a set

use std::collections: :BTreeSet;

let mut set: BTreeSet< > = BTreeSet: :new();
set.insert(5);

set.insert(7);

set.insert(11);

set.insert(23);

set.insert(25):

std::collections::BTreeSetAND ... ::BTreeMap

Sets and maps, respectively

In [2]: s/ let's create a set

use std::collections: :BTreeSet;

let mut set: BTreeSet< > = BTreeSet: :new();
set.insert(5);

set.insert(7);

set.insert(11);

set.insert(23);

set.insert(25):

In [3]: /7 listing a range
set.range(7..24).for each(|x| printin!("{}", x));

7
11
23

std::collections::BTreeSetAND ...::BTreeMap

Sets and maps, respectively

In [2]: s/ let's create a set

use std::collections: :BTreeSet;

let mut set: BTreeSet< > = BTreeSet: :new();
set.insert(5);

set.insert(7);

set.insert(11);

set.insert(23);

set.insert(25);

In [3]: /7 listing a range
set.range(7..24).for each(|x| println!("{}", X));

7
11
23

In [4]: /s listing a range: another way of specifying it
use std::ops::Bound::{Included, Excluded};
set.range((Excluded(5),Included(11))).for each(|x| println!("{}", x));

