DS-210: PROGRAMMING FOR DATA SCIENCE
LECTURE 39
1. ERROR HANDLING IN RUST
2. ALGORITHM DESIGN: DYNAMIC PROGRAMMING

ERROR HANDLING IN RUST

Two basic options:

e terminate when an error occurs: macro panic!(...)

e pass information about an error: enum Result<T, E>

MACRO panic!(...)

e Use for unrecoverable errors
e Terminates the application

MACRO panic!(...)

e Use for unrecoverable errors
e Terminates the application

In [2]: fn divide(a:u32, b:u32) -> u32 {
if b == 0 {
panic!("I'm sorry, Dave. I'm afraid I can't do that.");

}
a/b

MACRO panic!(...)

e Use for unrecoverable errors

e Terminates the application

In [2]: fn divide(a:u32, b:u32) -> u32 {
if b == 0 {
panic!("I'm sorry, Dave. I'm afraid I can't do that.");

}
a/b

In [3]: divide(20,7)

Out[3]: 2

MACRO panic!(...)

e Use for unrecoverable errors

e Terminates the application

In [2]:

In [3]:

Out[3]:

fn divide(a: , b:) -> {
if b == 0 {
panic!("I'm sorry, Dave. I'm afraid I can't do that.");
}
a/b
}
divide(20,7)
2

In [4]:

divide(20,0)

panicked at 'I'm sorry, Dave. I'm af
src/lib.rs:4:9

thread '<unnamed>'
raid I can't do that.',
stack backtrace:

©: std::panicking::begin panic

1: run user code 3
2: evcxr::runtime: :Runtime::run_ loop
3: evexr::runtime::runtime hook
4: evcxr jupyter::main
nhote: Some details are omitted, run with “RUST BACKTRAC

E=full® for a verbose backtrace.
Segmentation fault.

0: evexr::runtime::Runtime::install crash handlers::
segfault handler

1: <unknown=

2: mi free generic

3: alloc::alloc::dealloc

at /rustc/9d1b2106e23blabd32fcelfl17267604a

5102f57a/library/alloc/src/alloc.rs:105:14
<alloc::alloc::Global as core::alloc::Allocator

>::deallocate

3 9

NV

>

O
ENUOM ResuLt<T, E>

enum Result<T,E> { Functions can use it to

0k(T),

Err(E), e return aresult

e or information about an encountered error

ENUM Result<T,E>

enum Result<T,E> { Functions can use it to

0k(T),

Err(E), e return aresult

e or information about an encountered error

In [5]: fn divide(a:u32, b:u32) -> Result<u32, &'static str> {
if b 1= 0 {
Ok(a / b)
} else {
Err("Division by zero")

}

ENUM Result<T,E>

enum Result<T,E> { Functions can use it to

Ok(T),
Err(E), e return aresult

e or information about an encountered error

In [5]: fn divide(a:u32, b:u32) -> Result<u32, &'static str> {

if b !=0 {
ok(a / b)
} else {
Err("Division by zero")
}
}
In [6]: divide(20,7) In [7]: divide(20,0)

Out[6]: O0k(2) Qut[7]: Err("Division by zero")

ENUM ResuLt<T, E>

enum Result<T,E> { Functions can use it to
0k(T),
Err(E),
) (E) e return aresult
e or information about an encountered error
In [5]: fn divide(a: , b:) -> Result< , &'static > {
if b 1= 0 {
Ok(a / b)
} else {
Err("Division by zero")
}
}
In [6]: divide(20,7) In [7]: divide(20,0)
Qut[6]: 0k(2) Out[7]: Err("Division by zero")

e Useful when the error best handled somewhere else

e Example: input/output subroutines in the standard library

COMMON PATTERN: PROPAGATING ERRORS

e We are interested in the positive outcome: t in Ok (t)
e Butif an error occurs, we want to propagate it

e This can be handled using match statements

In [8]: // compute a/b + c/d
fn calculate(a:u32, b:u32, c:u32, d:u32) -> Result<u32, &'static str> {
let first = match divide(a,b) {
ok(t) == t,
Err{(e) => return Err(e),

e

let second = match divide(c,d) {
ok(t) => t,
Err(e) => return Err(e),

}i

Ok(first + second)

X

COMMON PATTERN: PROPAGATING ERRORS

e We are interested in the positive outcome: t in Ok (t)
e Butif an error occurs, we want to propagate it

e This can be handled using match statements

In [8]: // compute a/b + c/d
fn calculate(a:u32, b:u32, c:u32, d:u32) -> Result<u32, &'static str> {
let first = match divide(a,b) {
Ok(t) == t,
Err{(e) => return Err(e),

}i
let second = match divide(c,d) {
ok(t) => t,
Err(e) => return Err(e),
it
Ok(first + second)
}
In [9]: calculate(16,4,18,3) In [10]:
Out[9]: 0k(10) Out[10]:

calculate(16,0,18,3)

Err("Division by zero")

THE QUESTION MARK SHORTCUT

e Place ? after an expression that returns Result<T, E>

e Thiswill:
= give the content of Ok (t)

= orreturn Err(e) fromthe encompassing function

THE QUESTION MARK SHORTCUT

e Place ? after an expression that returns Result<T, E>

e Thiswill:
= give the content of Ok (t)

= orreturn Err(e) fromthe encompassing function

In [11]: // compute a/b + c/d
fn calculate(a:u32, b:u32, c:u32, d:u32) -> Result<u32, &'static str> {
Ok(divide(a,b)? + divide(c,d)?)
}

THE QUESTION MARK SHORTCUT

e Place ? after an expression that returns Result<T, E>
e This will:
= give the content of Ok (t)

= orreturn Err(e) fromthe encompassing function

In [11]: // compute a/b + c/d
fn calculate(a:u32, b:u32, c:u32, d:u32) =-> Result<u32, &'static str> {
Ok(divide(a,b)? + divide(c,d)?)

}
In [12]: calculate(16,4,18,3) In [13]: calculate(16,0,18,3)
Out[12]: oOk(1le@) Out[13]: Err("Division by zero")

1. ERROR HANDLING IN RUST
2. ALGORITHM DESIGN: DYNAMIC PROGRAMMING

BIG PICTURE: REST OF THIS LECTURE AND NEXT

Review a few approaches to algorithm design:

e dynamic programming
e greedy approach

e divide and conquer

HOMEWORK 9: BEST DECISION TREE FOR A CLASSIFICATION PROBLEM

Input: set of n labelled points (x;, z;), where x; € Rand z; € {0, 1}

Goal: find decision tree with L leaves and highest accuracy on the input set

X
HOMEWORK 9 RESTRICTION: L. = 2

How to solve it?

X
HOMEWORK 9 RESTRICTION: L. = 2

How to solve it?

Two-leaf decision tree: if x < T, output a, else output (1 — a)

HOMEWORK 9 RESTRICTION: L. = 2

How to solve it?

Two-leaf decision tree: if x < T, output a, else output (1 — a)

Two parameters: T and

e sufficestotry’ = x; forall x;'sanda € {0, 1}
e at most 2n options

HOMEWORK 9 RESTRICTION: . = 2

How to solve it?

Two-leaf decision tree: if x < T, output a, else output (1 — a)

Two parameters: T and

e sufficestotry’ = x; forall x;'sanda € {0, 1}
e at most 2n options

Algorithms:

e Simple: evaluate accuracy foreach T anda = O(n?) time
e More sophisticated: sort points, move the threshold for each a updating accuracies = O(n log n)

time

GENERAL /.

GENERAL /.

How do decision trees with at most [. leaves partition the line?

GENERAL /.

How do decision trees with at most [. leaves partition the line?

e at most L line segments: prediction fixed to 0 or 1 for each

. (L’il) =0 (nL_l) thresholds configurations to consider

e testeach: O (nL) ~time algorithm

GENERAL /.

How do decision trees with at most [. leaves partition the line?

e at most L line segments: prediction fixed to 0 or 1 for each

. (L’il) =0 (nL_l) thresholds configurations to consider

e testeach: O (nL) ~time algorithm

OUR GOAL: MUCH FASTER ALGORITHM

DEFINE SUBPROBLEMS

Simplifying assumption: x; < x» < ... < Xj,

DEFINE SUBPROBLEMS

Simplifying assumption: x; < x» < ... < Xj,

M|!l, k] = the minimum number of mistakes, when classifying the first k points, using at most / ranges

e/l e {l,...,L}
e ke {l,...,n}

DEFINE SUBPROBLEMS

Simplifying assumption: x; < x» < ... < Xj,

M|!l, k] = the minimum number of mistakes, when classifying the first k points, using at most / ranges

e/l e {l,...,L}
e ke {l,...,n}

M| L, n] will give the best accuracy

HOW TO COMPUTE M [/, k|1

M|l, k] = the minimum number of mistakes, when classifying the first k points, using at most / ranges

el e {l,...,L}
e ke {l,...,n}

HOW TO COMPUTE M [/, k|1

M|l, k] = the minimum number of mistakes, when classifying the first k points, using at most / ranges

el e {l,...,L}
e ke {l,...,n}

ONE LABEL PREDICTIONSON { x . : i < k < j}

e Define STi, j] = number of mispredictions
for one label classifiers on this set

e STi, j] minimum of the numbers of 0 and 1
labels on this set

HOW TO COMPUTE M [/, k|1

M|l, k] = the minimum number of mistakes, when classifying the first k points, using at most / ranges

el e {l,...,L}
e ke {l,...,n}

ONE LABEL PREDICTIONSON { x . : i < k

IA

J} COMPUTE M [1, k] FORALL k

e Define STi, j] = number of mispredictions « M[1, k] « ST1, k]
for one label classifiers on this set e O(n) time overall

e STi, j] minimum of the numbers of 0 and 1
labels on this set

HOW TO COMPUTE M [/, k|1

M|l, k] = the minimum number of mistakes, when classifying the first k points, using at most / ranges

e/l e {l,...,L}
e ke {l,...,n}

STi, j] = the minimum number of mistakes, when classifying points { x; : i < k < j} with onerange

HOW TO COMPUTE M [/, k|1

M|l, k] = the minimum number of mistakes, when classifying the first k points, using at most / ranges

e/l e {l,...,L}
e ke {l,...,n}

STi, j] = the minimum number of mistakes, when classifying points { x; : i < k < j} with onerange

COMPUTE M [/, K] FOR/ > 2 ANDALL &
M|l k] « _mink} (M[l - 1,i]+ STi + 1, k]

i={1

TIME COMPLEXITY?

TIME COMPLEXITY?

« Computing S[i, j]foralli and j: O(n?)

TIME COMPLEXITY?

e Computing S[i, j] for all i and j: O(n?)

e Computing M[l + 1, i] for all i from M[L, i]: O(n?)

TIME COMPLEXITY?

e Computing S[i, j] for all i and j: O(n?)

e Computing M[l + 1, i] for all i from M[L, i]: O(n?)

e Total runningtime: O(L) - O(n?) = O(Ln?)
e Much better than the more straightforward O(n%)

RECONSTRUCTING THE SOLUTION

e Thisgivesus M[L, n] = the minimum number of mistakes overall

e How to get the best solution, not just the best cost?

RECONSTRUCTING THE SOLUTION

e Thisgivesus M[L, n] = the minimum number of mistakes overall

e How to get the best solution, not just the best cost?

Iteratively:

e Startfrom M[L, n]

e Findithebest M[L — 1,i] + S[i + 1, n]

e Label {x;i1,...,x,} withthe better of O and 1
e Continuewith M[L — 1, i]

DYNAMIC PROGRAMMING IN GENERAL

e Define a small number of subproblems that are
= sufficient to solve the general problem

= helpful to solve each other

DYNAMIC PROGRAMMING IN GENERAL

e Define a small number of subproblems that are
= sufficient to solve the general problem

= helpful to solve each other

The most classic example: edit distance

e minimum number of edits to turn one string into another
e edits; deletions, insertions, substitutions
e correcting spelling mistakes: how far are two words?

Canyou solve it?

