DS-210: PROGRAMMING FOR DATA SCIENCE
LECTURE 37
|. MULTITHREADING, CONCURRENGY, PARALLELISM
2. SIMPLE MULTITHREADING: CRATE rayon
J. OTHER THINGS AVAILABLE IN RUST AND IN GENERAL

1. MULTITHREADING, CONCURRENCY, PARALLELISM
2. SIMPLE MULTITHREADING: CRATE rayon
J. OTHER THINGS AVAILABLE IN RUST AND IN GENERAL

X
RUNNING MULTIPLE THINGS AT ONCE

Various reasons:

RUNNING MULTIPLE THINGS AT ONCE

Various reasons:

e Separate GUI from the processing engine in your application

=B more responsive User experience

RUNNING MULTIPLE THINGS AT ONCE

Various reasons:

e Separate GUI from the processing engine in your application

=B more responsive User experience

e Bigscale computation: solving big data problems

X
RUNNING MULTIPLE THINGS AT ONCE

Various reasons:

e Separate GUI from the processing engine in your application

= MOre responsive user experience
e Bigscale computation: solving big data problems

e Running analytics on your laptop:
= speeding up a single core more and more challenging
= more cores even in consumer laptops

X

RUNNING MULTIPLE THINGS AT ONCE

Various reasons:

e Separate GUI from the processing engine in your application

= MOre responsive user experience
e Bigscale computation: solving big data problems

e Running analytics on your laptop:
= speeding up a single core more and more challenging
= more cores even in consumer laptops

e GPUs offer a lot of (restricted) parallelism

TERM EXPLANATION

TERM EXPLANATION

e Parallelism: things running at the very same time, different cores, processors, machines

TERM EXPLANATION

e Parallelism: things running at the very same time, different cores, processors, machines

e Concurrency: the art of sharing resources, even if only one thread is running at a time

TERM EXPLANATION

e Parallelism: things running at the very same time, different cores, processors, machines

e Concurrency: the art of sharing resources, even if only one thread is running at a time

e Threads:
= minimum organizational unit of your computation on a single machine

= multiple of them allowed, running at the same or different times

SOLVING A GIVEN PROBLEM MORE EFFICIENTLY VIA PARALLEL COMPUTATION?

e \Very problem dependent:
digging the Suez canal vs. digging a deep well

e What is possible: one of the deepest questions in computer science

PROGRAMMING: DIFFICULT AND VERY ERROR-PRONE

Challenges:

e Information exchange
e Sharing resources

e Taking and returning them properly:

= Similar to challenges in memory management

X
DINING PHILOSOPHERS' PROBLEM

e Multiple philosophers sitting around the table
= they do two things: think and eat

DINING PHILOSOPHERS' PROBLEM

e Multiple philosophers sitting around the table
= they do two things: think and eat

e Asingle fork between each two of them

e A philosopher needs two forks to eat

DINING PHILOSOPHERS' PROBLEM

e Multiple philosophers sitting around the table
= they do two things: think and eat

e Asingle fork between each two of them

e A philosopher needs two forks to eat

What algorithm could the philosophers use to achieve their life goals: eating and thinking?

POTENTIAL PROBLEMS

POTENTIAL PROBLEMS

How about this algorithm?

repeat:
think
take left fork when available
take right fork when available
eat
return left fork
return right fork

POTENTIAL PROBLEMS

How about this algorithm? e All philosophers could reach for the left fork
at the same time!
repeat:
think e They are all stuck

take left fork when availlable
take right fork when available
eat

return left fork

return right fork

e Thisis called deadlock

POTENTIAL PROBLEMS

How about this algorithm?

repeat:
think
take any of the forks
if the other available:
take it
eat
return all forks you have

POTENTIAL PROBLEMS

How about this algorithm? e A philosopher may never eat!
repeat: e Thisis called starvation
think

take any of the forks

if the other available:
take it
eat

return all forks you have

I. MULTITHREADING, CONCURRENCY, PARALLELISM
2. SIMPLE MULTITHREADING: CRATE rayon
J. OTHER THINGS AVAILABLE IN RUST AND IN GENERAL

CRATE rayon

General case difficult:

e manual management of threads

e communication and sharing work by them

Often you may want to speed up simple tasks:

e sorting

e aloop with independent iterations

(Similar in many ways to OpenMP for C/C++/Fortran)

AUXILIARY DEFINITIONS

In [2]:

:dep rayon

:dep rand

use rayon::prelude::*;

use std::thread;

use std::time::{Duration,SystemTime};
use rand::Rng;

use std::time::

// see how long something is executing
fn time it(f: impl FnOnce() -> ()) {
let before = SystemTime: :now();
f();
let after = SystemTime::now();
println!("Time: {:.37}", after.duration since(before).unwrap())

}

// do nothing for a specific number of milliseconds
fn wait(millis:u64) {
std: :thread::sleep(Duration::from millis(millis));

}

EXAMPLE OF SORTING

In [3]:

// random

const N: usize = 30 000 000;

let mut v = Vec::new();

for 1 in 0..N {
v.push(rand::thread rng().gen range(0..(N as 132)));

}i

EXAMPLE OF SORTING

In [31: // random
const N: usize = 30 000 000;
let mut v = Vec::new();
for i in 0..N {
v.push(rand::thread rng().gen range(0..(N as 132)));

1;

In [4]: let mut v copy = v.clone();
time it(|| v_copy.sort unstable());

let mut v _copy = v.clone();
time it(|| v copy.sort());

Time: 779.893ms
Time: 1.772s

3

EXAMPLE OF SORTING

In [3]: // random
const N: usize = 30 000 000;
let mut v = Vec::new();
for i in 0..N {
v.push(rand::thread rng().gen range(0..(N as 132)));
}i

In [4]: let mut v copy = v.clone();
time it(|| v_copy.sort unstable());

let mut v copy = v.clone();
time it(|| v _copy.sort());

Time: 779.893ms
Time: 1.772s

In [5]: let mut v copy = v.clone();
time it(|| v _copy.par_sort unstable());

let mut v copy = v.clone();
time it(|| v _copy.par sort());

Time: 288.935ms
Time: 567.020ms

-

REPLACING ITERATORS WITH PARALLEL ITERATORS
Replace iter() with par 1iter(), 1nto iter() with into par iter(),etc.

In [6]: // standard version
(1..=20).for _each(|x| {println!("{}",x);});

Lo~ WMNE

N o e e e e e e e
DWW LEWNREH O

REPLACING ITERATORS WITH PARALLEL ITERATORS
Replace iter() with par 1iter(), 1nto iter() with into par iter(),etc.

In [7]: // add explicit iterator construction
(1..=20).1into _iter().for each(|x| {printin!("{}",x);});

Lo~ WMNE

N o e e e e e e e
DWW LEWNREH O

REPLACING ITERATORS WITH PARALLEL ITERATORS

Replace iter() with par 1iter(), 1nto iter() with into par iter(),etc.

In [8]: // replace into iter() with into par iter() and wait for 500 ms to slow things down
(1..=20).1into par iter().for each(|x| {wait(500); println!("{}",Xx);});

1
11
18
16
2
17
12
19
3
13
14
20
4
15
6

= ~] W co

REPLACING ITERATORS WITH PARALLEL ITERATORS

Replace 1ter () with par iter(), into iter() with into par 1iter(),etc.

In [9]: // make the wait time variable to see other patterns of execution
(1..=20).into _par_iter().for each(|x| {wait(x*x*10); printin!("{}",x);});

D= ~J0OW O = Wk =

|

N o e e e e e e
SO s ~JWoowo N O

BENCHMARKING PARALLEL PROCESSING OF A LONG VECTOR

In [10]: let mut vl : Vec<i32> = (1..=50 000 000).collect();
let mut v2 = vl.clone();

BENCHMARKING PARALLEL PROCESSING OF A LONG VECTOR

In [10]: let mut vl : Vec<i32> = (1..=50 000 000).collect();
let mut v2 = vl.clone();

In [11]: // non-parallel version
time it(]|| vl.iter mut().for each(]|x]| *x += 100 / *xX + *x / 100));

Time: 81.415ms

2.1)

BENCHMARKING PARALLEL PROCESSING OF A LONG VECTOR

In [10]:

In [11]:

In [12]:

let mut vl : Vec<i32> = (1..=50 000 000).collect();
let mut v2 = vl.clone();

// non-parallel version
time it(]|| vl.iter mut().for each(|x]| *x += 100 / *xX + *x / 100));

Time: 81.415ms

// using parallel iterators
time it(|| v2.par iter mut().for each(|x| *x += 100 / *x + *x / 100));

Time: 31.021ms

2.1)

|. MULTITHREADING, CONGURRENCY, PARALLELISM
2. SIMPLE MULTITHREADING: CRATE rayon
J. OTHER THINGS AVAILABLE IN RUST AND IN GENERAL

X
SAMPLE OTHER THINGS AVAILABLE IN RUST AND BEYOND

X
SAMPLE OTHER THINGS AVAILABLE IN RUST AND BEYOND

e Starting separate threads and channels to share data
= communicating to share data:
o data sent between threads via channels
o data that was transmitted cannot be accessed anymore:
o verification via Rust's ownership rules

o checked at compile time!

SAMPLE OTHER THINGS AVAILABLE IN RUST AND BEYOND

e Starting separate threads and channels to share data
= communicating to share data:
o data sent between threads via channels
o data that was transmitted cannot be accessed anymore:
o verification via Rust's ownership rules

o checked at compile time!

e Mutex
= 3 lock for accessing a specific resource
= Vvarious versions:
o only one thread has access at a time

o or multiple threads with read access / only one thread with write access

SAMPLE OTHER THINGS AVAILABLE IN RUST AND BEYOND

e Starting separate threads and channels to share data
= communicating to share data:
o data sent between threads via channels
o data that was transmitted cannot be accessed anymore:
o verification via Rust's ownership rules

o checked at compile time!

e Mutex
= 3 lock for accessing a specific resource
= Vvarious versions:
o only one thread has access at a time

o or multiple threads with read access / only one thread with write access

e Chapter 16 of "The Rust Programming Language": overview of some mechanisms available in Rust

