DS-210: PROGRAMMING FOR DATA SCIENCE
LECTURE 39
1. COMPILING RUST TO WEBASSEMBLY
2. BONUS: FAST ALGORITHM FOR COMPUTING FIBONAGCI NUMBERS

OFFICE HOURS

e Today: 4:30-6 (will finish slightly early)

OFFICE HOURS

e Today: 4:30-6 (will finish slightly early)

e Proposed final project coding jams:
= Today: 7-77?
= Thursday: 8-77?

= (and another one on Monday?)

[REVIEW OF SOLUTIONS TO HOMEWORKS 9 & 10]

1. COMPILING RUST TO WEBASSEMBLY
2. BONUS: FAST ALGORITHM FOR COMPUTING FIBONACCI NUMBERS

RUNNING ARBITRARY CODE IN A BROWSER

Traditional way:

e JavaScript

e Java
e Adobe Flash

Shortcomings (various degrees):

e far from native speed
e portability
e many other

X

WEBASSEMBLY

e WebAsembly = "assembler" for the web

e Near-native speed

e Clear definition

e Every major web browser canrun it

e Can be compiled to from many languages, including Rust

X

WEBASSEMBLY

e WebAsembly = "assembler" for the web

e Near-native speed

e Clear definition

e Every major web browser canrun it

e Can be compiled to from many languages, including Rust

Additional features:

e memory directly accessible to JavaScript (to avoid foreign function interface translation)
e no garbage collection
= adding it is being considered

= cannot be compiled directly into from languages that use garbage collection

HOW DOES ONE USE WEBASSEMBLY IN PRACTICE?

e |t does not replace JavaScript completely
e Find out which parts of your code are slow
e Rewrite them in Rust and compile to WebAssembly

e Use JavaScript on your webpage to interact with WebAssembly binaries

HOW TO DEPLOY IT

Some basics:

e Write alibrary in Rust

e Compile as adynamic library

e Set the compilation target ("architecture") to wasm32 -unknown -unknown
e Library binaries: .wasm

e See the tutorial how to make Rust code and JavaScript talk to each other

Tutorial: https://rustwasm.github.io/docs/book/

1. COMPILING RUST TO WEBASSEMBLY
2. BONUS: FAST ALGORITHM FOR COMPUTING FIBONACCI NUMBERS

FIBONACCI NUMBERS: ALGORITHMS WE SAW SO FAR

0 if k=0
Fk= | if k=1
For+ F_1 1ttk>1

Assuming O(1) time arithmetic operations:

e O(F;)time by directly recursively following the definition
e O(k)time by storing values and computing F; from F),_, and Fj_

COMPUTING VIA MATRIX OPERATIONS

Useful matrix

COMPUTING VIA MATRIX OPERATIONS

Useful matrix

Observation:

—t

COMPUTING VIA MATRIX OPERATIONS

Useful matrix

Observation:] e _ Hence, by inc

A AX

COMPUTING VIA MATRIX OPERATIONS

Useful matrix

Obseryation:_

A

1 1
A =
o
_ Hence, by induction:
_ Fk+1] n 1
- F

Can we compute AX efficiently?

EXPONENTIATION BY SQUARING

Halving the exponent:

Even k: Odd k:

e Compute recursively A, = AK2 e Compute recursively A, = Ak=D)72
e Return Ai e Return Ai X A

EXPONENTIATION BY SQUARING

Halving the exponent:

Even k: Odd k:
e Compute recursively A, = AK2 e Compute recursively A, = Ak=D)72
e Return Ai e Return Ai X A

Total: O(log k) arithmetic operations

EXPONENTIATION BY SQUARING

Halving the exponent:

Even k: Odd k:
e Compute recursively A, = AK2 e Compute recursively A, = Ak=D)72
e Return Ai e Return Ai X A

Total: O(log k) arithmetic operations

Let's implement it!

AVOIDING BIG NUMBERS

e To avoid dealing with big numbers, let's just compute it modulo a large prime

e First, we have to find a big prime

AVOIDING BIG NUMBERS

e To avoid dealing with big numbers, let's just compute it modulo a large prime

e First, we have to find a big prime

In [2]: 1let lower bound = 1 234 567 890 000ul28;
(lower bound..2*lower bound)
filter(
| x| (2..%x)
.take while(|y| y * y <= *x)
All(|y] *x Sy != 0)
) .next ()

Out[2]: Some(1234567890007)

AVOIDING BIG NUMBERS

e To avoid dealing with big numbers, let's just compute it modulo a large prime

e First, we have to find a big prime

In [2]: 1let lower bound = 1 234 567 890 000ul28;
(lower bound..2*lower bound)
filter(
| x| (2..%x)
.take while(|y| y * y <= *x)
All(|y] *x Sy != 0)
) .next ()

Out[2]: Some(1234567890007)

In [3]: const BIG PRIME: ul28 = 1 234 567 890 007;

"SLOW" O(k)-TIME IMPLEMENTATION

In [4]: fn fib mod linear(x: ul28) -> ul28 {
if x == 0 {
return 0O;
}
let mut v = 1;
let mut fib prev = 0;
let mut fib = 1;
// 1nvariant:
// * fib prev == F(y - 1) mod BIG PRIME
// * fib == F(y) mod BIG Prime
while v < x {
y += 1;
(fib prev,fib) = (fib, (fib prev+fib) % BIG_ PRIME)
}

return fib

MATRIX OPERATIONS

In [5]: // Matrix shape
// 01
// 2 3
type MyMatrix = [u

const A: MyMatrix

128:4];

= [1,1,1,0];

fn multiply(x: MyMatrix, y: MyMatrix) -> MyMatrix {

let mut soluti
solution[0@] =
solution[1l] =
solution[2] =
solution[3] =
solution.iter
solution

on = [0;4];
x[0] * y[0O]
x[0] * y[1]
x[2] * y[0O]
x[2] * y[1]

+
-+
=+

+4

X[1]
x[1]
x[3]
X[3]

mut().for each(|x|

*yl2];
* y[3];
* yl2];
* y[3];
*¥X = *x % BIG PRIME);

IMPLEMENTATION OF THE FAST ALGORITHM

In [6]: // exponentiation of A by squaring (module BIG PRIME)
fn exponentiate fib matrix(exponent: ul28) -> MyMatrix {
if exponent == 0 {
return [1,0,0,1];

}
let tmp = exponentiate fib matrix(exponent / 2);
if exponent % 2 == 0 {
multiply(tmp, tmp)
} else {
multiply (multiply(tmp, tmp), A)
}

IMPLEMENTATION OF THE FAST ALGORITHM

In [6]: // exponentiation of A by squaring (module BIG PRIME)
fn exponentiate fib matrix(exponent: ul28) -> MyMatrix {
if exponent == 0 {
return [1,0,0,1];
}
let tmp = exponentiate fib matrix(exponent / 2);
if exponent % 2 == 0 {
multiply(tmp, tmp)
} else {
multiply (multiply(tmp, tmp), A)
}

In [7]: s/ Fibonacci computation
fn fib mod logarithmic(x: ul28) -> ul28 {
if x == 0 {
0]
} else {
let matrix = exponentiate fib matrix(x - 1);
matrix[0]

BENCHMARKING

In [8]: use std::time::SystemTime;

// see how long something is executing

fn time it(f: impl FnOnce() -> ul28) {
let before = SystemTime: :now();
let result = f();
let after = SystemTime: :now();
println! ("Time: {:.37}", after.duration since(before).unwrap());
println!("Computed number: {}\n", result);

BENCHMARKING

In [8]: use std::time::SystemTime;

// see how long something is executing

fn time it(f: impl FnOnce() -> ul28) {
let before = SystemTime: :now();
let result = f();
let after = SystemTime: :now();
println!("Time: {:.37}", after.duration since(before).unwrap());
println!("Computed number: {}\n", result);

In [10]: 1let k: ul28 = 10;
time it(|| fib mod linear(k));
time it(|| fib mod logarithmic(k));

Time: 970.000ns
Computed number: 55

Time: 1.651ps
Computed number: 55

BENCHMARKING

In [8]: use std::time::SystemTime;

// see how long something is executing

fn time it(f: impl FnOnce() -> ul28) {
let before = SystemTime: :now();
let result = f();
let after = SystemTime: :now();
println!("Time: {:.37}", after.duration since(before).unwrap());
println!("Computed number: {}\n", result);

In [11]: 1let k: ul28 = 1000;
time it(|| fib mod linear(k));
time it(|| fib mod logarithmic(k));

Time: 13.500pus
Computed number: 202736284353

Time: 3.105pus
Computed number: 202736284353

BENCHMARKING

In [8]: use std::time::SystemTime;

// see how long something is executing

fn time it(f: impl FnOnce() -> ul28) {
let before = SystemTime: :now();
let result = f();
let after = SystemTime: :now();
println!("Time: {:.37}", after.duration since(before).unwrap());
println!("Computed number: {}\n", result);

In [14]: 1let k: ul28 = 1 000 000;
time it(|| fib mod linear(k));
time it(|| fib mod logarithmic(k));

Time: 12.549ms
Computed number: 863350906745

Time: 5.494pus
Computed number: 863350906745

BENCHMARKING

In [8]: use std::time::SystemTime;

// see how long something is executing

fn time it(f: impl FnOnce() -> ul28) {
let before = SystemTime: :now();
let result = f();
let after = SystemTime: :now();
println!("Time: {:.37}", after.duration since(before).unwrap());
println!("Computed number: {}\n", result);

In [16]: let k: ul28 = 1 00O 0OO 000;
time it(|| fib mod linear(k));
time it(|| fib mod logarithmic(k));

Time: 12.108s
Computed number: 129171585224

Time: 8.383pus
Computed number: 129171585224

