
Programming Assignment 1 (due 2/10)

DS-563 / CS-543 @ Boston University

Spring 2023

Before you start. . .

Collaboration policy: You may verbally collaborate on programming assignments, however, you must
write your code and final report independently, i.e., without seeing other students’ solutions. If you choose
to collaborate on a problem, you are allowed to discuss it with at most four other students currently enrolled
in the class.

The header of each assignment you submit must include the field “Collaborators:” with the names of
the students with whom you have had discussions concerning your solutions. A failure to list collaborators
may result in a credit deduction.

You may use external resources such as textbooks, lecture notes, and videos to supplement your general
understanding of the course topics. You may use references such as books and online resources for well
known facts. However, you must always cite the source.

You may not look up solutions to a programming assignment in the published literature or on the web.
You may not share written work with anyone else. If you wish to make your code public (for instance, by
making it publicly available on GitHub or GitLab), please wait till the end of the semester. (If you want to
publish it earlier for whatever reason, please check with us first.)

Submitting: Your solution is to be submitted via Gradescope (entry code: 4VYBJ6). In particular, you
should submit a pdf with your project report and a zip file with your code (or an equivalent of these as long
as it’s allowed by Gradescope). Don’t forget to provide information how to obtain your data sets. More
information on this is provided below.

Late policy: No extensions. Submitting a solution one school day late (i.e., on Monday) may result in a
deduction of 10% of points.

Your task

1. Implement the CountMin sketch. You can use an arbitrary programming language. Make the imple-
mentation flexible so that running various experiments described later is not difficult.

2. Test your implementation on one or more simple artificial data sets, for which you know the expected
answers, to make sure that it works correctly.

1



3. Run your implementation on your favorite real–world data set. Run experiments to find out how well
it performs. How much does it deviate from the exact values with what probability? To answer this
question, you could, for instance, plot a graph that depicts the observed frequency of overestimating
by a given amount.

4. When deploying the CountMin sketch, you can choose both the number of buckets (let us denote it as
K) and the number of independent instances from which you select the minimum (let us denote it as
N ). Fix the total number of buckets, i.e., N × K, to something sufficiently large. (Think of this as
fixing the total space used by the data structure.)

(a) How does the performance of the algorithm change for various trade-offs between N and K?
Run experiments on either real–world data or artificial data sets (or both).

(b) What does theory—or at least our analysis—predict? Does the observed behavior match the
theory predictions? Or is it significantly better?

5. Recall that in class we used Markov’s inequality to bound the probability that we overestimate the
number of occurrences of any item by 2S/K or more, where S is the total number of items and K
is the number of buckets. We said that it is at most 1/2. Is this analysis tight (if K is large)? What
is the worst you can make this probability for some distribution? Run experiments to see how your
distribution behaves experimentally.

6. How much time (approximately) did you spend on this homework? Was it too easy/too hard?

Deliverables

Your final submission should include:

• Code:

– Provide your implementation of the CountMin sketch.

– Provide any auxiliary tools you develop for preprocessing data or generating artificial data sets.

– Make your code readable (use reasonable variable and function names, etc.).

• Report:

– It should include all important implementation details and discuss implementation decisions.
In particular, describe what hash functions you use (e.g., pairwise independent hash functions
such as in the first discussion section, or cryptographically strong hash functions, or hash func-
tions provided by your programming language). Describe briefly how to run your code with an
example.

– It should address all questions from the previous section. Use tables and/or graphs to display
numerical results of your experiments.

• Data: Describe your data sets and make sure we can access them. Think of what someone would need
to reproduce your results.

2



– For any public data set that you use, provide a link to where this data set can be obtained from
and include code used for its preprocesssing (if needed).

– For any artificial data set, provide code that generates it (try to make it deterministic, by for
instance, fixing the random seed it uses) or share a link (Dropbox, Google Drive, etc.) that can
be used to access the data set. If you provide a link, make sure it does not require logging in.

Inspiration for the final project

You can use this programming assignment as an inspiration for your final project. One option is to implement
an algorithm—especially an algorithm that was not covered in class or a non-trivial extension of an algorithm
covered in class—and run interesting experiments. A call for final project proposals, which we will publish
soon, will list more suggestions and ideas.

3


