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1 What we want to compute

Input: A stream of at most m elements from [n] = {1, . . . , n}. For simplicity, m = O(poly(n)).

Want to approximate: The number of distinct elements (a.k.a. F0). Denote it DE(S) for a stream S. More
specifically, for some parameter ϵ ∈ (0, 1), we want to output an estimate F such that

(1− ϵ)DE(S) ≤ F ≤ (1 + ϵ)DE(S).

Deletions: Sometimes deletions of items are allowed as well. In this setting, every stream item is of the
form “insert x” or “delete x.”

2 Adversarially robust streaming algorithms

Most streaming algorithms we have seen use randomness to “compress” the input into a small sketch that
uses much less space than what would be needed to store the entire input. In fact, for many problems,
including distinct elements, it is possible to show that an algorithm has to essentially store its entire input
to be able to provide even approximate estimates if it is deterministic. Therefore, randomness is crucial for
designing efficient streaming algorithms for many problems.

So far, any analysis we performed assumed that there is a fixed stream and we analyze the correctness of
our estimates at the end of this stream. In some applications, however, we may want to provide continuous
estimates as we go through the stream. (Think about, for instance, monitoring internet traffic.) This could be
problematic if the stream is not fixed but future elements of the stream may depend on previous estimates.
Estimates may leak information about the internal randomness of the algorithm. This information could be
used by an adversarial actor to break our estimates. Alternately, we may want to use the streaming algorithm
as a subroutine for another algorithm and this type of breakage could occur accidentally.

Is there a way to make our algorithms robust to this type of information leakage? In these lecture
notes, we discuss various techniques that allow for achieving this goal without turning to space–inefficient
deterministic algorithms.

We start by introducing a model which describes the challenge we are facing.
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Model: a game between two players, Algorithm and Adversary.

In each round:

• First, Adversary sends the next element of the stream to Algorithm.

• Second, Algorithm sends an updated estimate to Adversary.

Outcome: Adversary wins if at least one of the estimates send by Algorithm is not a (1± ϵ)-approximation
to the current value.

Resources:

• Algorithm: as small space as possible (it’s a streaming algorithm after all!)

• Adversary: can base next updates on her own random coin tosses and previous estimates of Algorithm,
does not know Algorithm’s personal coin tosses other than through the estimates that are made public

Goal: turn non-robust algorithms into robust

3 Simple solution: use a different copy in each step

A = non-robust algorithm that provides (1± ϵ)-approximation w.p. 1− δ/m

Solution: Keep and update m independent copies of A. In round i, return the estimate from the i-th copy.

Problem: multiplicative overhead over A is Θ(m), so we could just store the entire input. . .

4 Technique 1: “Sketch/algorithm switching” (Insertion Only)

A = non-robust algorithm that provides (1± ϵ/20)-approximation w.p. 1− δ/m2

Algorithm 1: Insertion–only DE(S) approximation

1 estimate← 0
2 index← 1
3 t = O(ϵ−1 logm) independent copies A1, . . . , At of A
4 foreach stream item x do
5 pass x to each Ai and process it independently
6 if estimate from Aindex ≥ (1 + ϵ/2)estimate then
7 estimate← estimate from Aindex
8 index← index + 1

9 output estimate

Observation (space usage): If all estimates of Ai’s that we look at are good, then ∼ log1+ϵ/2m =

O(ϵ−1 logm) copies of A suffice because DE(S) ∈ {0, . . . ,m}.
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Why: The estimate we provide cannot increase too many times from 0 and then roughly 1 to roughly m,
which bounds the maximum number of distinct elements in the stream.

Another observation: If all estimates of Ai’s that we look at are good, then the algorithm provides a good
approximation to DE(. . .) for all prefixes of the stream.
Why: If we are switching to a new Ai, it clearly provides a good approximation. Otherwise, we know we
cannot be much farther away from the correct answer than a factor of roughly (1 + ϵ/2)(1 + ϵ/20), which
is bounded by (1 + ϵ) as long as ϵ ∈ (0, 1).

Obstacle: So it remains to prove that these estimates are “good” for the non-robust algorithms,Ai’s, that we
use, when we use them. In the simple solution (Section 3), we used the fact that nothing has been revealed
to Adversary about a given Ai until we used it for providing an estimate and then we would immediately
throw thisAi away and never use it again. Here, however, we make multiple queries toAindex to track when
we cross a given threshold. This does provide some additional information to Adversary, who knows that
our estimate has not crossed the threshold and therefore, knows that some settings of internal coin tosses in
Aindex are not possible.

Getting around the obstacle:
• Assume Adversary is deterministic. If she’s not, by averaging, there must be a setting of her random

coin tosses for which she manages to break our algorithm with at least the same probability.

• Prove by induction: Algorithms Ai, for i ∈ {1, . . . , k}, when we query them, give all good estimates
with probability at least 1− kδ/m.

• The inductive step reasoning: Consider the moment when we increase index to k + 1 and start using
Ak+1 to track when we cross the new threshold. Note that while we use Ak+1, we keep giving to
Adversary a fixed estimate, which is stored in variable estimate. Since Adversary is deterministic, we
can simulate the stream that Adversary would produce if it received the value stored in estimate as
our estimate till the end of the stream. Ak+1 has to provide a good estimate for some prefix of this
stream, until it provides an estimate that is at least (1 + ϵ/2)estimate. Therefore, it suffices that Ak+1

provides good estimates throughout this fixed stream of updates. Since this stream is fixed, it is not
a problem that Ak+1 is non-robust, and via the union bound, it achieves this goal with probability
at least 1 − m · δ/m2 = 1 − δ/m. By another application of the union bound and the inductive
assumption, Ai’s for i ∈ {1, . . . , k + 1} provide good approximations when queried throughout our
algorithm with probability at least 1− kδ/m− δ/m = 1− (k + 1)δ/m.

• All internal estimates by Ai’s and estimates sent back to Adversary are therefore within the allowed
range with probability at least 1−m · δ/m = 1− δ.

Space usage: Since a non-robust algorithm for approximating DE with properties as listed above needs
only O(poly( lognϵ )) space, the total space is O(poly( lognϵ )) ·O( logmϵ ) = O(poly( lognϵ )).

5 [Bonus, not discussed in class] Technique 2: Sparse–Dense Trade-offs for
Insertion/Deletion Streams

When are deletions problematic: When the number of distinct elements can change significantly very
often. Sample stream: “insert 5”, “delete 5”, “insert 5”, “delete 5”, . . .
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Technique 1 builds on the fact that the actual value cannot change significantly too often. We won’t
define it here formally, but this value is known as the flip number. Unfortunately, in the example above, the
flip number is Ω(m), where m is the length of the stream.

Observation: Significant changes can only happen very often when the current number of distinct elements
is small. If the number of distinct elements is (1± ϵ/3)T , then over the next ϵT/3 updates, T will still be a
(1± ϵ)-multiplicative approximation to the number of distinct elements.

(Definitions) Sparsity of a vector v: We say that a vector v is k-sparse if at has at most k non-zero
coordinates. Analogously, we say that a vector v is k-dense if it has at least k non-zero coordinates.

(Auxiliary Tool) Sparse recovery:

For any k, there is a (linear sketching) streaming algorithm that uses k polylog(n) space and
can recover all k-sparse frequency vectors over a stream of m arbitrary deletions and insertions.

The algorithm provides the recovery guarantee for all vectors with probability at least 1−1/n3,
where the probability is taken over the initial selection of internal coin tosses.

Note that this works for recovering k-sparse vectors even if in the meantime, the vector was arbitrarily dense.

Solution:

• Create two regimes: sparse and dense. Handle them differently.

• Sparse regime (for at most 2
√
m-sparse vectors): Store the vector explicitly. A sparse representation

uses O(
√
m) words. In this case, we know the number of distinct elements exactly.

• Dense regime (at least
√
m-dense vectors): Run in parallel (from the very beginning of the algorithm,

ignoring the sparse/dense regime distinction) 3
√
m/ϵ parallel copies of a non-robust algorithm that

gives a (1 ± ϵ/3)-approximation with probability 1 − δ/m. In the dense regime, use a new unused
copy every ϵ

3

√
m updates to give an estimate, and immediately dispose this algorithm. Stick to this

estimate for ϵ
3

√
m updates.

• Switching between regimes:

– From sparse to dense: When the vector becomes 2
√
m-dense, which we track exactly, forget it

and just switch to the dense regime.

– From dense to sparse: If a new approximation of DE becomes lower than 3
2

√
m, switch to sparse

regime. We need to recover the frequency vector exactly in this case, which can be achieved
using the sparse recovery tool.

Space usage: O(
√
m) poly(ϵ−1 log n) words

• Exact vector in the sparse regime: O(
√
m) words

• Sparse recovery (one instance needed): O(
√
m polylog(n)) words

• O(ϵ−1√m) copies of a non-robust DE streaming algorithm: O(
√
mpoly(ϵ−1 log n)) words
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Best currently known: O(m1/3 ·poly(ϵ−1 log n)) words. It can be achieved by combining the sparse/dense
approach presented here with differential privacy. Differential privacy is an approach to protecting data of
individuals in a study of a set of people, but in this context, it is used to protect the internal randomness of
a set of an algorithm’s copies. It’s a great open question whether mΩ(1) space is necessary for computing
distinct elements on insertion/deletion streams.

6 A lower bound for adversarially robust streaming algorithms

It is natural to ask whether all streaming algorithms have an adversarially robust version that does not use
much more space (perhaps only a factor of polylog(N) more, where N is the maximum of the range of
numbers and the length of the stream). It turns out that this is not possible for connectivity sketches, which
we discussed previously. Suppose you had connectivity sketches of size n polylog(n) that can handle n2

updates while answering n2 adaptive queries in the meantime. We are not making this very formal here,
but this would imply that one could recover the entire graph from such a connectivity sketch, which would
mean that one could compress Θ(n2) bits of information into O(n polylog(n)) bits, which is not possible.
This could be achieved by discovering edges incident to each vertex and removing them one by one.
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