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1 Problem

Input: a stream describing a graph G on V = [n]

Question: Is G connected?

We consider two versions of the problem: insertion only (the input stream is a sequence of edges that
are never deleted) and insertion–deletion (the input stream is a sequence of updates of the form “insert
(u, v)” and “delete (u, v)” with no edge deleted before it is inserted).

2 Insertion–only streams

We keep a subset F of edges that is a spanning forest of the graph we have seen so far. Initially, F = ∅. For
every edge (u, v) that we see, if u and v are already connected by F , we do nothing. Otherwise, we add this
edge to F . At the end of the stream, G is connected if and only if all vertices are connected by F .

Space usage: O(n) words of space, because F consists of at most n− 1 edges.

Note: For fast processing, instead of storing explicitly F , you can use the union–find data structure.

3 Insertion–deletions streams

3.1 First attempts

• Sample edges and see what has not been deleted: the graph might become very dense and then have
lots of deletions, so this won’t work.

• Is a graph that is very sparse at the end of the stream the worst case then? Not really. We have not cov-
ered this topic, but if the final graph has k edges, then it can be fully recovered, using O(k polylog(n))
words of space. This can be achieved using a set of techniques known as sparse recovery (aka. com-
pressed sensing).

3.2 Overview: Three ingredients

We obtain our solution by combining three ingredients, which we introduce one by one:
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1. An encoding of a graph: We express the graph as a matrix with Θ(n3) {−1, 0, 1}–entries. Each row
of the matrix expresses the connectivity of a single vertex. While this encoding may seem wasteful, it
has properties which allow for expressing the connectivity of any set of vertices to its complement by
a linear combination of rows of the matrix.

2. Borůvka’s algorithm: Two popular algorithms for finding the minimum spanning trees are Prim’s
and Kruskal’s algorithms. Borůvka’s algorithm is another algorithm for this problem, which guaran-
tees more “parallelism.” We will see that it is a crucial property, which will allows for constructing a
spanning tree or forest for the input graph in a small number of non-adaptive rounds.

3. ℓ0–sampling: We won’t cover exact implementation details of this technique here, but it allows for
compressing high–dimensional vectors into a low–dimensional linear sketch that is sufficient for re-
covering at least one non-zero entry with high probability. We apply this to rows of our graph’s
encoding to significantly reduce the amount of information we need to store.

3.3 Ingredient 1: The graph’s encoding and its properties

We encode adjacency lists of every vertex as a vector of length
(
n
2

)
. Every entry corresponds to a single pair

of vertices in V = [n] and is indexed by (unordered) pairs {j, j′}, where j, j′ ∈ V and are different. For a
given vertex i ∈ V , we create a vector xi, such that (xi){j,j′}, the entry indexed by {j, j′}, is non-zero if and
only if i ∈ {j, j′} and {j, j′} is present in the graph. In other words, the entry corresponding to a specific
edge is non-zero if this edge is incident to i and present in the graph. If this entry is non-zero, it is either −1
or 1. More specifically, (xi){i,j} = −1 if j < i and (xi){i,j} = 1 if j > i.

Example:

1

23

4

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

x1 = ( 1 1 0 0 0 0 )
x2 = ( −1 0 0 1 0 0 )
x3 = ( 0 −1 0 −1 0 1 )
x4 = ( 0 0 0 0 0 −1 )

Note that most entries are 0. If a specific edge is not present in the graph, all entries in the column
corresponding to this edge are zero. Otherwise, only two of them are non-zero, i.e., those corresponding to
the endpoints of the edge. Moreover, one of them is −1 and the other one is 1.

The last property has very useful consequences. Namely, these vectors can be combined to represent the
connectivity of a subset of vertices. In the rest of this note, we write xS for any subset S of the vertices to
denote

∑
i∈S xi.

Claim: For any subset S of vertices and any pair {j, j′} of vertices, the entry corresponding to {j, j′} in xS
is non-zero if and only if {j, j′} is present in the graph and connects S with V \ S.
Proof sketch: Let e = {j, j′}. First, if e is not present in the graph, the entries corresponding to e are 0 in all
vectors xi, and hence the corresponding entry in xS is 0 as well, as desired. It remains to show that the claim
holds if e is present in the graph. Consider three cases. If e connects a vertex in S to a vertex not in S, then
exactly one of the non-zero entries corresponding to e is included in the summation and the corresponding
entry in xS is non-zero as well, which is what what we hoped for. Otherwise, if e connects vertices in V \S,
no non-zero entry corresponding to e ends up in the summation, and the corresponding entry in xS is zero,
as desired. Finally, if both endpoints of e belong to S, the only non-zero entries corresponding to e are
included in the summation and they cancel each other out, which finishes the proof. □
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3.4 Ingredient 2: Borůvka’s algorithm

We build on ideas from Borůvka’s algorithm. In particular, consider Algorithm 1, which is a parallel algo-
rithm for connectivity.

Algorithm 1: An algorithm for discovering connected components

1 foreach vertex v do
2 create a component of size 1 that contains only v

3 repeat
4 foreach component C do
5 select an arbitrary edge connecting C to the rest of the graph (if there is such an edge)

6 merge components that are connected via selected edges

This algorithm starts by creating a separate component for each vertex. Then, in the infinite loop, it keeps
merging these components using selected edges. We say that a subset S of vertices is a maximal connected
component if vertices that belong to it are all connected and there is no other vertex that is connected to S
via an edge.

The main loop in our pseudocode is infinite, but we want to show that after a relatively small number of
iterations, all the components are maximal connected components.

Claim: Before the i-th iteration of the repeat loop, each component is either a maximal connected compo-
nent or its size is at least 2i−1.
Proof sketch: Before we start the first iteration, the size of each component is 1 = 20 and therefore each
component is trivially connected in the underlying graph. Suppose now that the claim holds before iteration
i. Consider a component C that exists after the iteration. If it exists before the iteration and does not
change during it, then C has no edges connecting it to any vertex outside of C and is already a maximal
connected component. If C is a new component after iteration i, it is a result of merging two or more
components that existed before the iteration. Each of them is connected in the underlying graph and since
they are connected with graph edges, their union is connected as well. Moreover, since they are not maximal
connected components, the size of each of them is at least 2i−1 and the size of their union has to be at least
twice as much, i.e., 2 · 2i−1 = 2i. □

Corollary: The algorithm can be stopped after ⌈log n⌉ iterations of the loop, since the components do not
change after that. All components constructed by the algorithm are at this point maximal components, i.e.,
they are the connected components of the graph.

3.5 Ingredient 3: ℓ0–sampling

We use the following tool that allows for extracting a non-zero coordinate of a vector.

There is a linear sketching algorithm that takes a vector in {−n, . . . , n}n and turns it into
polylog(n) bits. For any v in the allowed range, the algorithm can correctly report a non-zero
coordinate of v if v is non-zero—or report that v is an all–zero vector—with probability at least
1− n−3.

Additionally, storing the algorithm’s randomness requires polylog(n) bits and all the com-
putation, both the sketch computation and reporting of a non-zero coordinate, can be performed
in O(polylog(n)) space.
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These types of algorithms are usually constructed so they do not only report a non-zero coordinate, but they
report a uniformly random non-zero coordinate, which may be important in some applications. This is why
we refer to this algorithm as ℓ0–sampling.

We won’t show how to construct it here, but one could for instance sample coordinates with probabilities
2−i for a logarithmic number of different settings of i. For some setting of i, we are likely to sample just one
coordinate, and then we can verify that this is just a single coordinate. If this is the case, we can restore both
the index of the coordinate and its magnitude, by adding these values for all coordinates that were sampled.

3.6 Putting it all together

In order to find out whether the input graph is connected, we want to simulate Borůvka’s algorithm after
seeing the entire stream. If we could explicitly compute the input graph’s encoding—i.e., if we had the
final vectors xi for all vertices i—then we would be able to determine an edge connecting any set subset of
vertices S to its complement V \ S (if such an edge exists) by computing xS and looking for a non-zero
coordinate in xS . However, we do not want to explicitly store and maintain the graph’s encoding since this
would require nΩ(1) space, and in particular, doing it directly would take Θ(n3) space due to the length of
vectors xi. To address this, we do not store xi’s, but instead maintain their linear sketches provided by the
ℓ0–sampling algorithm. This allows for both getting a sketch of xS by summing the sketches of xi for i ∈ S
as well as determining a non-zero coordinate of xS , for any fixed S, with high probability.

We can now break the computation up into two phases:

• Computing ℓ0–sketches of xi’s during a pass over the stream: For each iteration of the repeat loop
in Borůvka’s algorithm—recall that only O(log n) of them are needed—we maintain an independent
instance of the ℓ0–sketching algorithm with a sketch of each of xi’s. (The need for separate sketches
for each iteration becomes more clear later, but the main reason is that they only provide good guar-
antees with high probability for a fixed vector and we want an independent instance for each iteration
that is likely to work with components determined by the previous iterations.)

Initially, all xi’s are zero vectors, and so are their sketches. When an edge (u, v) is inserted or
removed, only two coordinates in all of xi’s change: (xu){u,v} and (xv){u,v}, which means that only
sketches for xu and xv have to be updated. This is achieved by taking advantage of the linearity of
the sketches. We compute the linear sketches of the updates to xu and xv, which are both zero vectors
except one coordinate, and add them to the previous sketches for xu and xv, respectively. This way
we maintain the ℓ0–sketches for all xi’s in O(n polylog(n)) space.

• Simulating Borůvka’s algorithm, using the sketches: We now describe how we simulate the re-
quired ⌈log n⌉ iterations of Borůvka’s algorithm. In the first iteration, we start with a separate com-
ponent for each vertex. We have sketches for each xi, 1 ≤ i ≤ n, provided by the first ℓ0–sampling
algorithm. We apply this ℓ0–sampling algorithm to discover one edge connecting each single–vertex
component to the rest of the graph. We then use these edges to merge components. What is the prob-
ability that we fail to correctly discover an existing edge for any of the components? By the union
bound, it is at most n · 1

n3 = 1
n2 .

To simulate the second, or any later, iteration, we need to discover edges connecting each of the
components to the rest of the graph (whenever such edges exist). For the j-th iteration, we use the
sketches computed by the j-th ℓ0–sampling algorithm. Since this algorithm is a linear sketching
algorithm, we can compute the sketch of xC for any component C by summing sketches xi for all
i ∈ C. Once we compute the sketch for xC for each component C created in the previous iteration, we
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apply the ℓ0 sampling procedure to each of them to discover a non-zero coordinate, which corresponds
to an edge connecting C to the rest of the graph, or to detect that the vector is an all zero vector.

Now, what is the probability that the j-th ℓ0–sampling algorithm fails to correctly identify an edge
connecting some component C created in the first j − 1 iteration with the rest of the graph or to
correctly detect that this component has no such connection (i.e., it is maximal)? By its properties, the
algorithm computes a correct answer with probability at least 1− n−3 for any fixed vector. By using
an independent instance of the ℓ0–sampling algorithm for each iteration, we ensure that the set of
vectors xC , which are determined by the current components C, that we use with a given instance is
determined (i.e., fixed) before we start using this instance of ℓ0–sampling. Hence by the union bound,
the probability that the algorithm fails on any of them is at most

(number of components) · 1

n3
≤ 1

n2
.

By applying the union bound over all simulated iterations of Borůvka’s algorithm, we bound the
probability that any of the instances of the ℓ0–sampling algorithm fails at some point by

⌈log n⌉ · 1

n2
= o

(
1

n

)
.

An additional note on adaptive use of randomized algorithms: A somewhat subtle but important issue
here was the fact that the guarantee of the algorithm that we use only holds with high probability for any
fixed vector. The problem is that if we kept using the same ℓ0–sampling sketches throughout the simulation
of Borůvka’s algorithm, vectors xC would not be fixed in advance, but would correspond to components C
that are a function of internal randomness of the sketching algorithm. Hence, these vectors would not be
fixed in advance. We get around this issue by using Borůvka’s algorithm, which allows us to reduce the
connectivity question to O(log n) rounds of adaptivity, in which all vectors that we consider are a function
of only previous rounds. This is a property that DFS or BFS would not provide as their level of adaptivity
can be as large as Ω(n).

This is a topic that we will discuss next in this course. More specifically, we will explore the framework
of adversarially robust streaming algorithms, which can be used on adaptive data streams.

3.7 [Bonus, not discussed in class] An additional distributed application

Note that this algorithm can applied in the following communication setting. Suppose that there are n
players, each knowing the adjacency list of a single vertex. Perhaps it’s the local connectivity of this player.
Then each of them can send a polylog(n)–bit message to a single player, who can then find out whether all
the players are connected. The only requirement is that all the players have shared randomness needed to
initialize the instances of the ℓ0–sampling algorithm.

It is interesting that, for connectivity, the entire graph (i.e., potentially Θ(n2) bits of information) can
be reduced to O(n polylog(n)) information. In particular, the adjacency list of each neighborhood of size
n − 1 can be reduced to O(polylog(n)) bits, independently of other neighborhoods, as long as all players
share a common source of randomness.

4 [Bonus, not discussed in class] Extensions

This approach can be extended to many connectivity related questions, including the following:
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• outputting a spanning forest,

• reconstructing a minimum spanning tree,

• k–connectivity.1

1For instance, finding all the bridges in the graph, where an edge is a bridge if removing it increases the number of connected
components.
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